
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4

Peter Georg, Nils Meyer,∗ Stefan Solbrig and Tilo Wettig
Department of Physics, University of Regensburg, 93040 Regensburg, Germany

E-mail: nils.meyer@ur.de

In 2020 we deployed QPACE 4, which features 64 Fujitsu A64FX model FX700 processors
interconnected by InfiniBand EDR. QPACE 4 runs an open-source software stack. For Lattice
QCD simulations we ported the Grid LQCD framework to support the ARM Scalable Vector
Extension (SVE). In this contribution we discuss our SVE port of Grid, the status of SVE
compilers and the performance of Grid. We also present the benefits of an alternative data layout
of complex numbers for the Domain Wall operator.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:nils.meyer@ur.de
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4 Nils Meyer

1. Introduction

Lattice QCD has traditionally been a developer and early adopter of new high-performance
computing (HPC) resources. A very promising new instruction set architecture is Arm’s Scalable
Vector Extension (SVE), which has been implemented in hardware for the first time in the A64FX
processor developed by RIKEN R-CCS and Fujitsu. This processor powers Japan’s flagship Fugaku
supercomputer and is also used in the QPACE 4 cluster at the University of Regensburg.

Porting and optimizing Lattice QCD code for a new hardware architecture has been a difficult
and time-consuming task in the past. The Grid Lattice QCD framework [1] makes this task much
easier by isolating the details of the hardware in a few files at the lowest layer of the software stack.
Our port of Grid to SVE is described in [2–4]. In this contribution we study the performance of
this port on QPACE 4, including compiler performance and a different choice of the data layout for
complex numbers compared to Grid.

2. QPACE 4

QPACE 4 is the latest member of the QCD PArallel Computing Engine (QPACE) series. The
small-scale cluster features compute nodes from the Fujitsu PRIMEHPC FX700 series. QPACE 4
was deployed at the University of Regensburg in June 2020 and is shown in Fig. 1. The key
characteristics of QPACE 4 are

• 64 Fujitsu A64FX CPUs, 48 cores each (up to 4 NUMA domains), 1.8 GHz (see Fig. 2)

Figure 1: QPACE 4 cluster at the University of
Regensburg.

N
etw

ork -on-a-c hip

PCIe Gen 3 Controller

C

C

C

CC

C

C

C

C

C

C

C

C

12 cores

8 GB HBM2

C

C

C

CC

C

C

C

C

C

C

C

C

12 cores

8 GB HBM2

C

C

C

CC

C

C

C

C

C

C

C

C

12 cores

8 GB HBM2

C

C

C

CC

C

C

C

C

C

C

C

C

12 cores

8 GB HBM2

Figure 2: High-level architecture of the Fujitsu
A64FX CPU.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4 Nils Meyer

12 24 36 481
Ncore

0

200

400

600

800

1000

G
B/

s 625
560

835

STREAM benchmark (GCC 10.1 auto-vectorization)

Copy (a[:] = b[:])

Scale (a[:] = const · b[:])

Add (a[:] = b[:] + c[:])

Triad (a[:] = b[:] + const · c[:])

Copy (incl. WA)

Scale (incl. WA)

Add (incl. WA)

Triad (incl. WA)

Figure 3: STREAM benchmark.

8 12 16 20 24 28 32 36 40 44 48
L

0

50

100

150

200

250

300

350

400

450

G
Fl

op
/s

D
P

Total L2 capacity

GCC 10.1

clang/LLVM 12.0

0

200

400

600

800

1000

G
B/

s

Benchmark su3: mac(z,x,y) on L4 lattice

Figure 4: SU(3) matrix multiplication. Arithmetic
performance is proportional to data throughput.

• 512-bit ARM Scalable Vector Extension (SVE)

• 177/354 TFlop/s peak in double/single precision (DP/SP)

• 2048 GB HBM2 memory total

• InfiniBand EDR interconnect (100 Gbit/s)

We run an open-source software stack using CentOS Stream 8, GCC 10.1 and OpenMPI 4.0. For
storage we use the GlusterFS parallel file system. For Lattice QCD we use Grid [1] and the Grid
Python Toolkit (GPT) [5].

3. Main memory throughput

The nominal aggregate peak throughput of the HBM2memories of a single node is 1 TB/s. The
de-facto standard benchmark for evaluation of memory throughput is the STREAM benchmark [6].
STREAM consists of four mini-benchmarks (copy, scale, add, and triad). The mini-benchmarks
differ in computation and in the load/store ratio of array elements. For copy and scale the load/store
ratio is 1:1 per element, and for add and triad this ratio is 2:1.

We show thread scaling of the STREAM benchmark on a single QPACE 4 node in Fig. 3. Data
throughput scales with the number of cores in use if Ncore > 12. We measure up to 625 GB/s of
benchmark data throughput. The caches of the A64FX implement a write-back policy, i.e., a cache
block is loaded from main memory on a write miss. This is called Write Allocation (WA). WA
causes extra data traffic and thus reduces the effective memory throughput. Including WA traffic,
the data throughput is up to 835 GB/s. We note that STREAM on a single Fugaku node (48 compute
cores, 2.2 GHz) yields comparable results despite the difference in clock frequencies.

4. Grid on QPACE 4

4.1 Port to A64FX (512-bit SVE)

The ARM C Language Extensions (ACLE) provide access to SVE vector types and SVE
instructions in C/C++ [7]. We use ACLE to implement Grid’s lower-level functions. Grid stores

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4 Nils Meyer

re re re re re re re re re im im im im im im im imre im re im im re im

vector register vector register vector register

RIRI memory RRII memory

Figure 5: Data layout of complex numbers in DP using 512-bit vector registers: alternating real and
imaginary parts (RIRI) and separate real and imaginary parts (RRII).

complex numbers in memory alternating real and imaginary parts (see Fig. 5). We refer to this
layout as RIRI. We use hardware support for processing complex numbers. We published the
details of the implementation in [2–4]. Our Grid port to the A64FX is available in upstream Grid
(configure --enable-simd=A64FX).

Key computational kernels such as Wilson Dslash and the performance-relevant part of the
Domain Wall operator, which we refer to as Domain Wall kernel and discuss in detail in [8],
are specialized to the A64FX using ACLE and the RIRI layout. Manual instruction scheduling
facilitates instruction latency hiding and optimal use of the register file. We use software prefetching
to optimize the data flow between compute cores and memory hierarchy. Specialized kernels are
enabled by the command line argument --dslash-asm when starting binaries.

4.2 Benchmarks

Grid features a rich set of tests and performance benchmarks. Here we present a relevant subset
of benchmarks to illustrate the performance of Grid on QPACE 4.

Benchmark_su3 performs independent SU(3) matrix multiplication on each lattice site in a 4d
volume. This benchmark is well suited for SVE compiler testing. We show the performance of
SU(3) matrix multiplication as a function of the lattice volume on a single QPACE 4 node in Fig. 4.
Using GCC 10.1 we achieve up to about 300 GFlop/s DP, which corresponds to a benchmark data
throughput of about 744 GB/s not taking into account WA traffic. We also show the performance
of the open source LLVM/clang SVE compiler. LLVM/clang-based SVE compilers (including
open source LLVM/clang, Arm’s armclang, and also Fujitsu’s compiler in clang mode) introduce
unnecessary copy operations and therefore generate non-optimal code. We did not test Cray’s
LLVM/clang-based SVE compiler, but we expect similar results. At present we recommend using
GCC 10.1 or 10.2.

The performance of the Wilson Dslash kernel and the Domain Wall kernel is shown in Table 1
and 2, respectively, on a single QPACE 4 node. We observe a mild performance penalty using
4 MPI ranks compared to 1 MPI rank. We attribute this penalty to the overhead associated with
inter-process communication using shared memory. SP performance is nominally expected to be

Volume 1 MPI rank 4 MPI ranks
DP SP DP SP

163 × 32 360 893 321 619
243 × 48 350 990 383 827
323 × 64 339 1023 383 898

Table 1: Performance of the Wilson Dslash kernel
on a single node in GFlop/s.

Volume 1 MPI rank 4 MPI ranks
DP SP DP SP

163 × 32 × 8 484 949 408 803
163 × 32 × 16 477 958 409 815
243 × 48 × 8 476 960 432 875

Table 2: Performance of the Domain Wall kernel
on a single node in GFlop/s.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4 Nils Meyer

1 2 4 8 12 16 20 24 28 32
Nodes (4 MPI ranks per node)

0

2500

5000

7500

10000

12500

15000

17500

20000

G
Fl

op
/s

1283 × 64

1282 × 642

128× 643

64× 643

1283 ×
64

1282 ×
642

128×
643

Benchmark wilson (GCC 10.1)

Perfect scaling

Strong SP (128× 643)

Strong DP (128× 643)

Weak SP

Weak DP

Figure 6: MPI scaling of the Wilson Dslash kernel.

1 2 4 8 12 16 20 24 28 32
Nodes (4 MPI ranks per node)

0

2000

4000

6000

8000

10000

12000

14000

G
Fl

op
/s

643 × 32

642 × 322

64× 323

324

643 ×
32

642 ×
322

64×
323

Benchmark dwf, Ls = 16 (GCC 10.1)

Perfect scaling

Strong SP (64× 323)

Strong DP (64× 323)

Weak SP

Weak DP

Figure 7: MPI scaling of the Domain Wall kernel.

about twice the DP performance due to the doubling of the Flop throughput. We observe this
for the Domain Wall kernel, while for the Wilson Dslash kernel DP performance is lower than
expected. To explain this, we note that (a) Grid uses different data layouts for SP and DP and (b) the
Domain Wall kernel has higher cache reuse than the Wilson Dslash kernel. Performance variations
for different lattice volumes are mild. We attribute the variations to the details of cache reuse,
which differ amongst lattice volumes. We note that GCC 10.1 and 10.2 deliver best performance.
LLVM/clang-based compilers and other versions of GCC perform worse.

The multi-node performance of key computational kernels usingMPI is shown in Figs. 6 and 7.
QPACE 4 has two separate InfiniBand partitions, and the maximum number of nodes within each
partition is 32. Grid’s MPI code path is non-trivial. For instance, it includes many branches in
the instruction stream, multiple function calls, irregular memory access, and communication over
the network. We observe a significant performance drop running on multiple nodes compared to a
single node despite large local volumes. Differences between 1 rank per node and 4 ranks per node
are marginal (< 3%). Further investigation is necessary to identify and resolve bottlenecks in the
MPI code path.

4.3 Alternative layout of complex numbers

Grid only supports the RIRI layout for complex numbers. In a collaboration with University of
Erlangen we studied the Domain Wall kernel using an alternative data layout for complex numbers
on Fugaku [8]. We illustrate the RRII layout in Fig. 5. Key characteristics of the RIRI and RRII
layout are shown in Table 3. For RIRI we use the svcadd (I1 ± 8I2) and svcmla (I1 + I2 × I3)
intrinsics for processing complex numbers (I8 ∈ C). The corresponding instructions have high
latencies and limitations on pipeline usage (see [8, 9] for details). SVE does not support complex
multiplication without addition of a third operand. For RRII only real arithmetics is necessary,
which comes with lower instruction latencies and no limitations on pipeline usage.

We tested the RRII layout on the A64FX extending GridBench [10], which features a subset of
Grid. We implemented the Domain Wall kernel using ACLE and used datasets generated by Grid.
GridBench does not support MPI, therefore benchmarks are restricted to a single node. On Fugaku
(48 cores, 2.2 GHz) the RRII layout outperforms RIRI by up to 12% [8]. On a single QPACE 4
node the RRII layout outperforms RIRI by up to about 20%, see Fig. 8. Instructions processing

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4 Nils Meyer

RIRI RRII

Parallel lattice site updates 4 DP, 8 SP 8 DP, 16 SP
Full spinor projection to half spinor svcadd (I1 ± 8I2) if applicable Real arithmetics
Reconstruction of full spinor svcadd (I1 ± 8I2) if applicable Real arithmetics
SU(3) × half spinor svcmla (I1 + I2 × I3) Real arithmetics
Real Flop per lattice site update 1416 (need to compute 0 + I2 × I3) 1320
FLA / FLB pipeline usage Imbalanced Balanced

Table 3: RIRI and RRII layout characteristics for the Domain Wall kernel (I8 ∈ C).

4×
24

3 ×
8

8×
24

3 ×
8

12
× 24

3 ×
8

16
× 24

3 ×
8

20
× 24

3 ×
8

24
× 24

3 ×
8

28
× 24

3 ×
8

32
× 24

3 ×
8

36
× 24

3 ×
8

40
× 24

3 ×
8

44
× 24

3 ×
8

48
× 24

3 ×
8

Volume

500

600

700

800

G
Fl

op
/s

D
P

Domain Wall kernel: RRII vs. RIRI (GCC 10.1)
Fugaku RRII

Fugaku RIRI

QPACE 4 RRII

QPACE 4 RIRI

Figure 8: Performance of the Domain Wall kernel using RRII and RIRI layout.

complex numbers predominantly use the FLA pipeline, thereby leading to imbalanced pipeline
usage. Pipeline usage is balanced using real arithmetics, which is the case for the RRII layout. RIRI
consumes up to 20% more energy than RRII on Fugaku. RRII energy consumption benefits further
from shutting down one of the two floating-point pipelines with minor impact on performance.
Currently we are not able to shut down pipelines on QPACE 4 due to missing software support.
However, we expect energy savings comparable to, or even higher than, Fugaku and comparable
impact on performance. We plan to extend Grid to support the RRII layout in the future.

5. Summary and outlook

QPACE 4 comprises 64 Fujitsu A64FX CPUs interconnected by InfiniBand EDR. The A64FX
achieves outstanding performance for Lattice QCD applications. GCC 10.1 and 10.2 achieve
best overall performance, while other compilers underperform. An alternative layout of complex
numbers is beneficial on the A64FX, but has yet to be integrated into Grid. The necessary code
modifications remain future work.

Acknowledgment

We acknowledge funding of the QPACE 4 project provided by the Deutsche Forschungsgemein-
schaft (DFG) in the framework of SFB/TRR-55. Furthermore, we acknowledge support from the

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
6
8

Grid on QPACE 4 Nils Meyer

HPC tools team at Arm. We thank Yasumichi Aoki, Peter Boyle, Issaku Kanamori, and Yoshifumi
Nakamura for valuable discussions.

References

[1] P. Boyle, A. Yamaguchi, G. Cossu and A. Portelli, Grid: A next generation data parallel
C++ QCD library, PoS (LATTICE 2015) (2016) 023 [1512.03487]

[2] N. Meyer, P. Georg, D. Pleiter, S. Solbrig and T. Wettig, SVE-enabling Lattice QCD Codes,
2018 IEEE International Conference on Cluster Computing (CLUSTER) (2019) 623
[1901.07294]

[3] N. Meyer, D. Pleiter, S. Solbrig and T. Wettig, Lattice QCD on upcoming Arm architectures,
PoS (LATTICE 2018) (2019) 316 [1904.03927]

[4] N. Meyer, D. Pleiter, S. Solbrig and T. Wettig, Lattice QCD on QPACE 4, 2020 Asian-Pacific
Symposium of Lattice Field Theory (APLAT 2020)

[5] C. Lehner et al., Grid Python Toolkit (GPT), [https://github.com/lehner/gpt]

[6] J. D. McCalpin, Memory Bandwidth and Machine Balance in Current High Performance
Computers, IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
(1995)

[7] Arm, ARM C Language Extensions for SVE,
[https://developer.arm.com/documentation/100987/latest/]

[8] C. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein and T. Wettig,
Execution-Cache-Memory modeling and performance tuning of sparse matrix-vector
multiplication and Lattice quantum chromodynamics on A64FX, Concurrency and
Computation Pract. Exper. (2021) e6512

[9] Fujitsu, A64FX Microarchitecture Manual,
[https://github.com/fujitsu/A64FX/tree/master/doc]

[10] N. Meyer and C. Alappat, GridBench with A64FX support,
[https://github.com/nmeyer-ur/GridBench/tree/intrinsics]

7

https://doi.org/10.22323/1.251.0023
https://arxiv.org/abs/1512.03487
https://doi.org/10.1109/CLUSTER.2018.00079
https://arxiv.org/abs/1901.07294
https://doi.org/10.22323/1.334.0316
https://arxiv.org/abs/1904.03927
https://conference-indico.kek.jp/event/113/contributions/2139
https://conference-indico.kek.jp/event/113
https://conference-indico.kek.jp/event/113
https://github.com/lehner/gpt
https://developer.arm.com/documentation/100987/latest/
https://doi.org/10.1002/cpe.6512
https://doi.org/10.1002/cpe.6512
https://github.com/fujitsu/A64FX/tree/master/doc
https://github.com/nmeyer-ur/GridBench/tree/intrinsics

	Introduction
	QPACE 4
	Main memory throughput
	Grid on QPACE 4
	Port to A64FX (512-bit SVE)
	Benchmarks
	Alternative layout of complex numbers

	Summary and outlook

