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1. Introduction

Semileptonic decays of mesons are a rich source of information for understanding fundamental
physics. These relatively simple decay processes are especially useful for extracting CKM matrix
elements, since the decay rates are proportional to the square of the matrix element [1, 2]. In
particular, the most precise exclusive extractions of |Vcb| and |Vub| come from measurements of
B→ D(∗)`ν and B→ π`ν . In the case of D decays, D→ K`ν gives a precise constraint on |Vcs|
while D→ π`ν can be used to constrain |Vcd |. Central to these determinations are experimental
measurements of the process and first-principles calculations of hadronic form factors from lattice
QCD [3].

In order to test the Standard Model as stringently as possible, one desires many independent
determinations of a given CKM element. Agreement among determinations signifies the validity
of the Standard Model (for these processes, at this level of precision), whereas discrepancies could
indicate the presence of new physics. In the case of |Vcb| and |Vub|, there are long-standing discrep-
ancies between so-called inclusive determinations, which study decay rates summed over outgoing
final states, and the most precise exclusive determinations from semileptonic decays [3, 4, 5]. This
situation is summarized succinctly in Fig. 1.

In addition to the outstanding inclusive/exclusive puzzles, there is by now a large body of
evidence of so-called “flavor anomalies” uncovered at the B-factories and by LHCb (see, e.g., [1,
6, 7, 8]). Perhaps the most striking of these are in the B→ D`ν and B→ D∗`ν R-ratios, given
simply as the ratio of branching fractions into the ` = τ final state over ` = µ,e. Lattice QCD
calculations furnish all form factors needed to describe these decays and so can give predictions
for integrated quantities like the R-ratios. Therefore, lattice data are critical to anchor the expected
distributions based on the Standard Model, and if these anomalies persist, to help understand and
disentangle in detail the nature of new physics.

Here we adopt a unified approach to semileptonic decay calculations in which all quarks, both
valence and sea, are treated using the same action. This setup allows us to compute the correlation
functions needed for the whole gamut of pseudoscalar to pseudoscalar transitions simultaneously,
resulting in a suite of form factors and improved determinations for all the aforementioned CKM
elements. Having a common setup for all the processes will allow us to study ratios of observables
for different channels including all correlations; we expect that this capability will yield interesting
results for comparison with experimental results. As will be discussed in Sec. 2.2, the combination
of very fine lattice spacings with an improved staggered quark action is what makes this setup
possible.

The remainder of this article is organized as follows. In Sec. 2 we will briefly review the
theory of semileptonic transitions with pseudoscalar initial and final states, and explain both the
theory and relevant implementation details of our lattice QCD calculations. In Sec 3 we present
preliminary results. Finally, we end with a few summary remarks in Sec 4.
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Figure 1: Status summaries of determinations of |Vub|, |Vcb|, |Vcd |, and |Vcs| from [3] and [5]. The
colored bands give the CKM determination based on specific processes. The calculations described
in this proceeding will lead to precision determinations for all four of these CKM matrix elements.

2. Setup

2.1 Theory Recap

Matrix elements furnish a variety of form factors, defined according to

〈L|V µ |H〉 ≡
√

2MH
(
vµ

H f‖(q
2)+ pµ

⊥ f⊥(q2)
)

(2.1)

≡ f+(q2)

(
pµ

H + pµ

L −
M2

H −M2
L

q2 qµ

)
+ f0(q2)

M2
H −M2

L

q2 qµ (2.2)

〈L|S |H〉= M2
L−M2

H

mh−m`
f0(q2) (2.3)

In these expressions, MH , ML, pµ

H , and pµ

L refer to the mass and four-momentum of the “heavy"
mother (H) and “light" daughter (L) mesons; mh and m` refer to the “heavy" mother and “light"
daughter quarks; vµ

H = pµ

H/MH is the four-velocity of the heavy meson; pµ

⊥ = pµ

L − (pL · vH)v
µ

H is
the component of the daughter hadron’s momentum orthogonal to vH , and; qµ = pµ

H − pµ

L is the
momentum transfer. The final equality relating f0 to the scalar matrix element follows from partial
conservation of the vector current (see Eq. (2.7) below). The manifestly covariant expressions
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simplify in the rest frame of the decaying heavy meson and take the following forms:

f‖ = ZV 0

〈
L
∣∣V 0

∣∣H〉
√

2MH
(2.4)

f⊥ = ZV i

〈
L
∣∣V i
∣∣H〉

√
2MH

1
pi

L
(2.5)

f0 = ZS
mh−m`

M2
H −M2

L
〈L|S |H〉 . (2.6)

These expressions are written in terms of bare lattice currents and their associated renormalization
factors, so that ZJJlattice has the same matrix elements (up to controlled uncertainties) as J . The
scalar and vector currents admit non-perturbative renormalization using partial conservation of the
vector current (PCVC). As an operator statement in the continuum, PCVC says ∂µV µ =(mh−m`)S.
In momentum space, this result implies the following non-perturbative renormalization condition
for the lattice currents [12]:

ZV 0(MH −EL)
〈
L
∣∣V 0 ∣∣H〉+ZV iqqq · 〈L|VVV |H〉= ZS(mh−m`)〈L|S |H〉 . (2.7)

With the present treatment of all valence quarks with the highly improved staggered quark (HISQ)
action [13], the local scalar density enjoys absolute normalization, ZS ≡ 1.

Our ongoing calculations are also computing the tensor form factor, which is relevant in
searches for physics beyond the Standard Model. However, in keeping with the scope of the talks
actually presented at the conference, we restrict our discussion to the scalar and vector form factors.

2.2 Lattice Calculation Details

≈ a [fm] m` mh/mc

0.15 physical 0.9,1.0,1.1
0.12 physical 0.9,1.0,1.4
0.088 physical 0.9,1.0,1.5,2.0,2.5
0.088 0.1×ms 0.9,1.0,1.5,2.0,2.5
0.057 physical 0.9,1.0,1.1,2.2,3.3
0.057 0.1×ms 0.9,1.0,2.0,3.0,4.0
0.057 0.2×ms 0.9,1.0,2.0,3.0,4.0
0.042 0.2×ms 0.9,1.0,2.0,3.0,4.0,4.2

Table 1: A summary of the lattice spacings and valence quark masses used in our calculation. The
text describes the ensembles’ sea and valence masses in more detail. The gauge ensembles were
generated by the MILC collaboration [14, 15, 16].

Our calculation uses ensembles generated by the MILC Collaboration using N f = 2+ 1+
1 flavors of dynamical sea quarks with the HISQ action [14, 15, 16]. Table 1 summarizes the
ensembles we have used in our calculation to date. Lattice spacings range from a≈ 0.15 fm down
to a ≈ 0.042 fm. An ensemble with physical-mass light quarks appears for all lattice spacings
but a ≈ 0.042 fm. (For the decays of B mesons, we plan to include a physical-mass ensemble at
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a≈ 0.042 fm in the future.) At the finest lattice spacings, we also include ensembles with heavier-
than-physical light quarks with m` ≈ 0.1mstrange and m` ≈ 0.2mstrange. For the light and strange
quarks, the valence quark masses match those in the sea. In all ensembles the charm and strange
quarks in the sea have physical masses. The heavy valence quarks range in mass from roughly
0.9mc to just below the lattice cutoff mha . 1. At the finest lattice spacing employed to date,
a≈ 0.042 fm, this setup allows simulation close to the physical mass of the bottom quark.

To access the form factors, we compute the following two-point and three-point correlation
functions

CH(t) = ∑
xxx
〈OH(0,000)OH(t,xxx)〉 (2.8)

CL(t, ppp) = ∑
xxx

eippp·xxx 〈OL(0,000)OL(t,xxx)〉 (2.9)

C3(t,T, ppp) = ∑
xxx,yyy

eippp·yyy 〈OL(0,000)J(t,yyy)OH(T,xxx)〉 , (2.10)

where the OH,L are staggered meson operators which couple to the mother H and daughter L
hadrons. For the scalar and temporal vector current we employ local staggered operators, while
for spatial vector current we use the one-link operator. For brevity, we have suppressed staggered
structure and Lorentz indices in the lattice current J, which represents the scalar, vector, and tensor
currents. Figure 2 shows the structure of these correlation functions. We work in the rest frame of
the decaying mother hadron H and compute the recoiling daughter hadron L with eight different lat-
tice momenta pppL =

2π

Nsa
nnn, where Ns ∈ Z is the spatial extent of the lattice and nnn is (0,0,0), (1,0,0),

(1,1,0), (2,0,0), (2,1,0), (3,0,0), (2,2,2) or (4,0,0). For each choice of mass and momentum,
we compute the three-point function for a few (typically 4 or 5) different source-sink separations T .
For the light-quark propagators in the calculation, we employ the truncated solver method [9, 10],
using 24 to 36 loose solves per configuration.

To extract the required matrix elements, our analysis employs joint correlated fits to the two-
point and three-point correlation functions using the spectral decomposition. For instance, for the
three-point function in Eq. (2.10), the spectral decomposition reads

C3(t,T, ppp) = ∑
m,n

(−1)m(t+1)(−1)n(T−t−1)Amne−E(n)
L (ppp)te−M(m)

L (T−t). (2.11)

As usual for staggered fermions, the correlation functions include smoothly decaying contributions
with the desired parity as well as oscillating contributions from states of opposite parity. The
spectral decompositions for the two-point functions are similar. The ground-state amplitude A00

is proportional to the matrix element 〈L|J |H〉, and so a fit to Eq. (2.11) gives the required matrix
element. For the sake of visualization, the following ratio of correlation functions is useful:

RS(t,T, ppp) =
√

2MH

(
mh−ml

M2
H −M2

L

)
CS

3(t,T, ppp)√
CL

2 (t, ppp)CH
2 (T − t)e−ELte−MH(T−t)

. (2.12)

Up to discretization effects, this ratio asymptotically approaches the form factor f0 for large times:

RS(t,T, ppp) 0�t�T−→ f0(ppp). (2.13)
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L J

t=Tt=0 t

H
mhml

Figure 2: A schematic figure of the 3pt functions defined in Eq. (2.10). The “light" daughter hadron
is created with momentum ppp at the origin. An external current J is inserted at time t. The “heavy"
mother hadron is destroyed at rest at time T .

Slightly different ratios, differing only by kinematic prefactors and renormalization factors, can
also be constructed for f‖ and f⊥. Although our quantitative analysis is based on fits to the spectral
decomposition, the ratio provides a valuable visual check on the results.

The present analyses are blinded. More precisely, all of our three-point correlation functions
are multiplied by a blinding factor, CBlind

3 (t,T, ppp)=X×C3(t,T, ppp), where X ∈ (0.95,1.05) is a fixed
random number. Each sub-analysis (D decays, B decays) employs its own blinding factor. We plan
to carry the analysis of the blinded form factors all the way through the chiral interpolation and
continuum extrapolation, unblinding only when the analysis of systematic errors is complete. In
these proceedings, all results involving three-point functions are blinded.

Several analysis choices are required when fitting the correlators. The starting times tmin for
the fits are taken to be a fixed physical distance across ensembles, tmin ≈ 0.5 fm. Excluding data
with noise-to-signal ratio greater than 30% determines the value of tmax (for many correlators, this
amounts to retaining all the data out to the midpoint of the lattice). We fix the number of states
included in each channel, typically 3 decaying and 1 oscillating (“3+ 1") states for the daughter
meson and 3+ 2 states for the mother meson. The precise values are determined by analyzing
the two-point functions in isolation and looking for the fewest states necessary to describe the
correlator well for t & 0.5 fm. After fixing these parameters for our preferred analyses, we vary
these choices and look at the variation of the matrix elements and energies.

3. Results

3.1 Two-point correlators

Figures 3 displays kaon two-point functions on the physical-mass a ≈ 0.09 fm ensemble.
These correlators are fairly representative of the quality of two-point functions across masses and
lattice spacings. As expected, the noise-to-signal ratio grows exponentially for boosted correlators,
and so highly boosted correlators, e.g. with nnn = (2,2,2) or (4,0,0), become noisy at large times.
Even so, clear plateaus spanning several time slices are present in the effective mass curves at each
momentum in the center pane.1 Fig. 4 shows the ground-state energies from fitting the correlators
in Fig 3. The good agreement with the continuum dispersion relation, E2 = ppp2 +m2, demonstrates

1To reduce the visual impact of the opposite parity states, we construct the effective masses separately on even and
odd time slices using ameff ≡ 1

2 arcCosh [(C(t +2)+C(t−2))/C(t)]. The triangle and circle markers in the middle pane
of Fig. 3 correspond to the even and odd time slices, respectively.
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Figure 3: Left: Kaon two-point correlation functions on the physical-mass a≈ 0.09 fm ensemble.
Right: Effective masses. In both panels, the matched colors denote different momenta.

Figure 4: The ground-state energies from fits the correlators displayed in Fig 3 compared with
continuum dispersion relation E2 = p2 +m2. The envelope given by the black dotten lines denotes
the order of magnitude of the expected discretization errors, O(αs a2 p2).

the good control of discretization effects afforded by the use the HISQ action. Using the results
of these and other fits to two-point functions, we fix tmin ≈ 0.5 fm and the number of states for
subsequent fits involving three-point functions.

3.2 D-meson decays

Figure 5 summarizes fit results for the scalar form factor f0 for the transition Ds→ K on the

6
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Figure 5: Left: Best-fit results (solid horizontal bands) for the bare form factor f Ds→K
0 on the

physical-mass a ≈ 0.09 fm ensemble. The points show the ratio Eq. (2.12) for fixed source-sink
separation T = 25. The colors correspond to different momenta and match the conventions of
Fig. 3. Right: The momentum dependence of f Ds→K

0 on the same ensemble.

physical-mass a ≈ 0.09 fm ensemble. The left pane shows data for the ratio defined in Eq. (2.12)
together with the horizontal bands showing best-fit values for the form factors at each momentum.
The right pane shows the behavior of the form factor as a function of momentum. The general
results are qualitatively similar for the other lattice spacings, currents, and transitions.

Renormalization of the vector current is done non-perturbatively using PCVC. In principle,
much freedom exists for extracting the Z-factors using Eq. (2.7). The present analysis fits the bare
matrix elements as a function of momentum to Eq. (2.7), treating ZV 4 and ZV i as fit parameters. The
left pane of Fig. 6 shows the results of this procedure for the vector-current renormalization factor
ZV 4 across the different ensembles; the results for ZV i are similar. Because three-point functions of
V 4, VVV , and S are all multiplied by the same blinding factor, the fitted ZV 4 and ZV i are not affected
by the blinding procedure.

Our analysis directly computes the renormalized form factors f0, f‖, and f⊥ from the relations
in Eqs. (2.4)–(2.6). Most relevant for phenomenology are the form factors f0 and f+, the latter
of which can be obtained from a linear combination of f‖ and f⊥. Besides the relation involving
the scalar matrix element in Eq. (2.6), the scalar form factor f0 can also be reconstructed from f‖
and f⊥. Moreover, a kinematic constraint says that f+ = f0 at the point of vanishing momentum
transfer, q2 = 0. Together, these relations offer the chance to perform consistency checks by con-
structing f0 and f+ in different ways. The right pane of Figure 6 shows the result of such checks
for the transition Ds→K on the physical-mass a≈ 0.09 fm ensemble, with excellent agreement for
both constructions of f+ (upper set of points) and f0 (lower set of points). As expected, all agree
near q2 = 0.

7
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Figure 6: Left: Results for the renormalization factor ZV 4 , defined in Eq. (2.7), across several
ensembles. Right: Results for the renormalized form factors f+ and f0 constructed in different
ways from f0, f‖ and f⊥.

3.3 B-meson decays

Although the physical-mass charm quark can be comfortably accommodated on all of our
lattice ensembles (even at relatively coarse lattice spacings), the lattice cutoff 1/a is below the
physical mass of the b quark until one reaches our (current) finest lattice spacing of a≈ 0.042 fm,
for which amb ≈ 0.84. In order to address this issue, on each ensemble we work at a range of
heavy quark mass values between charm and bottom, limited to amh . 1. These values are listed in
Table 1 in units of mc. In this way we can map out the dependence of our form factors as the quark
mass varies between charm and bottom.

Examples of this procedure are shown in Fig. 7 for the B(s)→D(s) form factor f0 at zero-recoil.
The x-axis in these figures is the mass MH of an “H” meson, a physical proxy for the heavy quark,
composed of an h-quark and a light quark, with the target B mass on the right of the figure. One can
see that as we go to finer lattices we are able access masses closer to the physical B meson. The raw
data coming from correlator fits has been improved in these figures by removing known tree-level
discretization artifacts [16] in the extraction of f0. Evidently, these factors represent the bulk of the
heavy mass discretization effects, and so after their removal the data have largely collapsed onto a
curve representing the actual evolution of f0 as heavy quark mass is varied. Additional variation
stems from a combination of discretization artifacts, light sea-quark, and mistuning effects that will
be the subject of future analysis.

Figure 8 shows preliminary results for the f0 form factors now extended to non-zero recoil
momentum (q2 < q2

max) on the a≈ 0.09 and 0.06 fm ensembles. In order to convey visually the size
of the discretization effects in the raw data, the data in these figures have not been improved with
tree-level discretization factors. (Our final analysis will, of course, incorprorate these effects.) Note
that good statistical control is achieved even for large momentum values, and that good coverage is
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present over the physical q2 range.
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Figure 7: Bs → Ds (left) and B→ D (right) zero recoil form factor results. The data have been
improved by removing dominant tree-level discretization artifacts, so that the resultant data roughly
trace out a curve corresponding to the physical variation of f0(q2

max) with heavy quark input mass
mh. Note that for Bs→ Ds the data points at the same lattice spacing but with different light sea-
quark masses overlap.
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Figure 8: Bs→ Ds (left) and B→ D (right) f0(q2) form factor results at zero and non-zero recoil
momentum. Note the small statistical errors, particularly for the Bs → Ds case with no valence
light quarks, and good coverage over the q2 range of the decays.

4. Summary

We have presented preliminary results for B(s)- and D(s)-semileptonic decay form factors com-
puted using the HISQ valence action on the HISQ N f = 2+1+1 ensembles generated by the MILC
Collaboration. These quantities are critical inputs in the quest to elucidate the flavor sector of the
Standard Model and understand or resolve the nature of so-called flavour anomalies. In particular,
the calculations outlined here together with high-precision experimental measurements will result
in improved determinations of |Vcs|, |Vcb|, |Vcd |, |Vub|, providing some of the most stringent tests of
the Standard Model in these respective sectors.
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Although our results are still preliminary, we observe good statistical control over the kine-
matic range studied. Our calculation benefits from fine lattice spacings, which are especially crit-
ical for handling the b quark, and ensembles with physical light quarks at most lattice spacings.
This treatment means that our final chiral analysis will be an interpolation (instead of an extrapola-
tion), which we expect to reduce systematic errors. In the future, we will extend our calculation to
ensembles with an even finer lattice spacing of a≈ 0.03 fm.
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