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Effective three-dimensional Polyakov loop theories derived from QCD by strong coupling and
hopping expansions are valid for heavy quarks and can also be applied to finite chemical potential
𝜇, due to their considerably milder sign problem. We apply the Monte-Carlo method to the
𝑁 𝑓 = 1, 2 effective theories up to O(𝜅4) in the hopping parameter at 𝜇 = 0 to determine
the critical quark mass, at which the first-order deconfinement phase transition terminates. The
critical end point obtained from the effective theory to order O(𝜅2) agrees well with 4-dimensional
QCD simulations with a hopping expanded determinant by the WHOT-QCD collaboration. We
also compare with full QCD simulations and thus obtain a measure for the validity of both the
strong coupling and the hopping expansion in this regime.
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1. Introduction

Significant effort in theory and experiment is dedicated to explore QCD under extreme condi-
tions, such as high temperature (𝑇) or baryon chemical potential (𝜇𝐵 = 3𝜇). Despite considerable
progress for zero and small chemical potential, the QCD phase diagram is still largely unknown, be-
cause the fermion sign problem prohibits Monte Carlo investigations with finite chemical potential,
especially in the cold and dense region, which is central to astrophysics.

These difficulties have motivated the development of effective theories derived from lattice
QCD by strong coupling and hopping parameter expansions, which are vaild in the heavy quark
regime. These can either be solved by fully analytic series expansion techniques known from
statistical mechanics [1–3], or by numerical simulations if their sign problem is sufficiently mild [4,
5].

For the 𝑆𝑈 (3) pure gauge theory, the deconfinement transition spontaneously breaks the global
𝑍3 center symmetry, and is of first order. The presence of dynamical quarks breaks the center
symmetry explicitly, and leads to a weakening of the deconfinement transition with decreasing
quark mass until it vanishes at a critical point in the 3D Ising universality class. For still lighter
quark masses, the transition becomes an analytic crossover. This behavior is also inherited by the
effective theory.

Here we update previous studies of three-dimensional effective theories at zero chemical
potential in the heavy quark regime using standard Monte Carlo simulations. We calculate the
deconfinement phase transition and its critical end point for 𝑁 𝑓 = 1, 2, for 𝑁𝑡 = 4, 6 for different
truncations of the three-dimensional effective theory up to order O(𝜅4) in the hopping parameter.
Our results are compared with simulations of four-dimensional QCD after hopping expansion [6],
as well as with full QCD simulations [7].

2. 3D Effective lattice theories

First we briefly discuss the derivation of the effective action. For more detail, see for instance
[4, 8]. The starting point is a (3 + 1)-dimensional lattice with Wilson gauge and fermion action for
𝑁 𝑓 flavors. Integration over the fermion fields leads to a partition function of the form

𝑍 =
∫

[d𝑈𝜇] exp[−𝑆𝑔]
𝑁 𝑓∏
𝑓 =1

det[𝐷 𝑓 ], 𝑆𝑔 = − 𝛽

2𝑁𝑐

∑
𝑝

[
tr𝑈𝑝 + tr𝑈†

𝑝

]
, (1)

where det[𝐷 𝑓 ] is the fermion determinant and 𝑆𝑔 is the Wilson gauge action. The effective theory
arises after integrating over the spatial link variables,

𝑍 =
∫

[d𝑈0] exp[−𝑆eff], exp[−𝑆eff] =
∫

[d𝑈𝑖] exp[−𝑆𝑔]
𝑁 𝑓∏
𝑓 =1

det[𝐷 𝑓 ] . (2)
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The effective action depends on temporal Wilson lines𝑊 ®𝑥 only, whose traces are the Polyakov loops

𝐿 ®𝑥 = tr𝑊 ®𝑥 = tr
𝑁𝑡−1∏
𝑡=0

𝑈0(®𝑥, 𝑡). (3)

Our investigation is based on truncated effective theories, where the spatial link integration is
performed after a combined character (i.e. effectively resummed strong coupling) and hopping
parameter expansion. For the Yang-Mills part, to leading order we obtain a nearest-neighbor
two-point interaction

𝑆
𝑔
eff = −

∑
〈 ®𝑥, ®𝑦〉

log
[
1 + 𝜆(𝑢, 𝑁𝑡 )(𝐿 ®𝑥𝐿

∗
®𝑦 + 𝐿∗

®𝑥𝐿 ®𝑦)
]
, (4)

where the effective coupling reads

𝜆(𝑢, 𝑁𝑡 = 4) = 𝑢4 exp
[
4(4𝑢4 + 12𝑢5 − 14𝑢6 − 36𝑢7 + 295

2
𝑢8 + 1851

10
𝑢9 + 1035317

5120
𝑢10)

]
, (5)

𝜆(𝑢, 𝑁𝑡 ≥ 6) = 𝑢𝑁𝑡 exp
[
𝑁𝑡 (4𝑢4 + 12𝑢5 − 14𝑢6 − 36𝑢7 + 295

2
𝑢8 + 1851

10
𝑢9 + 1055797

5120
𝑢10)

]
. (6)

Here 𝑢(𝛽) = 𝛽/18 + 𝛽2/216 + . . . ∈ [0, 1], is the coefficient of the fundamental representation
character. It is a numerically known function over the entire range of lattice gauge couplings and
constitutes the expansion parameter. Higher order interaction terms can be found in [9].

The contributions of the fermion determinant are computed by a hopping expansion. It is
factored into temporal and spatial hops in forward and backward directions, 𝑇 = 𝑇+ + 𝑇− and
𝑆 = 𝑆+ + 𝑆−,

det[𝐷 𝑓 ] = det[1 − 𝑇 − 𝑆] = det[1 − 𝑇] det[1 − (1 − 𝑇)−1𝑆] = det[𝐷stat] det[𝐷kin] .

To leading order the fermion determinant represents static quarks with only temporal hops, and can
be reformulated in terms of Polyakov loops,

𝑆0 = − log det[𝐷stat] = − log

(∏
®𝑥
[1 + ℎ1𝐿 ®𝑥 + ℎ2

1𝐿
∗
®𝑥 + ℎ3

1]
2 [1 + ℎ̄1𝐿

∗
®𝑥 + ℎ̄2

1𝐿 ®𝑥 + ℎ̄3
1]

2

)
. (7)

To leading order in the combined expansions, the coefficients are the heavy quark fugacities,

ℎ1(𝜇) = (2𝜅𝑒𝑎𝜇)𝑁𝑡 = 𝑒
𝜇−𝑚𝑞

𝑇 = ℎ̄1(−𝜇). (8)

In the strong coupling limit 𝛽 = 0 the constituent quark mass is given by 𝑎𝑚𝑞 = − log(2𝜅) [10].
The kinetic quark determinant is evaluated by further splitting 𝐷kin into parts from positive and
negative spatial hops, 𝑃 =

∑
𝑖 𝑃𝑖 = (1 − 𝑇)−1𝑆+ and 𝑀 =

∑
𝑖 𝑀𝑖 = (1 − 𝑇)−1𝑆−. Here the static

quark propagator 𝑄−1
stat = (1 − 𝑇)−1 enters, which is known to all orders in the hopping parameter.
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Then the expansion of the kinetic quark determinant proceeds as

det[𝐷kin] = det[1 − 𝑃 − 𝑀] = exp[tr log(1 − 𝑃 − 𝑀)]

= exp
[
− tr 𝑃𝑀 − tr 𝑃𝑃𝑀𝑀 − 1

2
tr 𝑃𝑀𝑃𝑀 + O(𝜅6)

]
= 1 − tr 𝑃𝑀 − tr 𝑃𝑃𝑀𝑀 − 1

2
tr 𝑃𝑀𝑃𝑀 + 1

2
(tr 𝑃𝑀)2 + O(𝜅6). (9)

In order to perform the spatial gauge integrals on det[𝐷kin], it is necessary to expand down the
exponential as shown in equation (9). Further details of the derivation up to order O(𝜅4) can be
found in [4, 11]. The process of resummation is employed to obtain the exponential expression of
the effective theory which then improves the convergence of the effective theory, since it includes
an infinite number of higher-order graphs. Finally, the leading term of the kinetic determinant
contributes to a two-point interaction and is of order 𝜅2,

−𝑆2 = −
∫

[d𝑈 𝑗]
∑
𝑖

tr 𝑃𝑖𝑀𝑖 =
∑
𝑖

∫
[d𝑈 𝑗] tr

[
𝑄−1

stat𝑆
+
𝑖 𝑄

−1
stat𝑆

−
𝑖

]
= −2ℎ2

∑
𝑖, ®𝑥

[(
tr

ℎ1𝑊 ®𝑥
1 + ℎ1𝑊 ®𝑥

− tr
ℎ̄1𝑊

†
®𝑥

1 + ℎ̄1𝑊
†
®𝑥

) (
tr

ℎ1𝑊 ®𝑥+𝑖
1 + ℎ1𝑊 ®𝑥+𝑖

− tr
ℎ̄1𝑊

†
®𝑥+𝑖

1 + ℎ̄1𝑊
†
®𝑥+𝑖

)]
. (10)

To re-express the trace over a rational function containing temporal Wilson lines in terms of Polyakov
loops, we use the generating function

𝐺 (𝛼, 𝛽) = log det(𝛼 + 𝛽ℎ1𝑊), (11)

from which

𝑊𝑛𝑚 = tr
(ℎ1𝑊)𝑚

(1 + ℎ1𝑊)𝑛 =
(−1)𝑛−1

(𝑛 − 1)!
𝜕𝑛−𝑚

𝜕𝛼𝑛−𝑚
𝜕𝑚

𝜕𝛽𝑚
𝐺 (𝛼, 𝛽)

����
𝛼=𝛽=1

. (12)

The contribution to order 𝜅4 is

− 𝑆4 =
∫

[d𝑈 𝑗]
(
− tr 𝑃𝑃𝑀𝑀 − 1

2
tr 𝑃𝑀𝑃𝑀 + 1

2
(tr 𝑃𝑀)2

)
(13)

and after complete evaluation is too long to be printed here. For explicit expressions, see [4, 11].
The effective action to O(𝜅4) used in our simulations is then

𝑆eff = 𝑆
𝑔
eff + 𝑆0 + 𝑆2 + 𝑆4. (14)

Note that moving away from the strong coupling limit leads to corrections to the fermion couplings
ℎ𝑖 coming from mixed graphs with contributions from non-vanishing gauge coupling as well. Our

4
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Crossover first-order triple Tricritical 3D Ising
𝐵4(𝜅𝑐 ,∞) 3 1.5 2 1.604

𝜈 - 1/3 1/2 0.6301(4)
𝛾 - 1 1 1.2372(5)

Table 1: Critical values for 𝜈, 𝛾 and 𝐵4 for different phase transitions [12].

effective couplings including corrections for 𝑁𝑡 ≥ 4 are

ℎ1(𝑢, 𝜅, 𝑁𝑡 ) = (2𝜅𝑒𝑎𝜇)𝑁𝑡 exp
[
6𝑁𝑡 𝜅

2𝑢

(
1 − 𝑢𝑁𝑡−1

1 − 𝑢
+ 4𝑢4 − 12𝜅2 + 9𝜅2𝑢 + 4𝜅2𝑢2 − 4𝜅4

)]
, (15)

ℎ2(𝑢, 𝜅, 𝑁𝑡 ) =
𝜅2𝑁𝑡

𝑁𝑐

(
1 + 2

𝑢 − 𝑢𝑁𝑡

1 − 𝑢
+ 8𝑢5 + 16𝜅2𝑢4

)
, (16)

ℎ1
3(𝑢, 𝜅, 𝑁𝑡 ) =

𝑁𝑡 (𝑁𝑡 − 1)𝜅4

𝑁2
𝑐

[
1 + 8

3
(𝑢 + 𝑢2 + 4𝑢5 + 8𝜅3𝑢4)

]
, for 𝑁𝑡 = 4, (17)

ℎ2
3(𝑢, 𝜅, 𝑁𝑡 ) =

𝜅4𝑁𝑡

𝑁2
𝑐

[
1 + 4

𝑢 − 𝑢𝑁𝑡

1 − 𝑢
+ 16𝑢5 + 32𝜅3𝑢4

]
, (18)

ℎ3
3(𝑢, 𝜅, 𝑁𝑡 ) =

𝜅4𝑁2
𝑡

𝑁2
𝑐

[
1 + 4

(1 − 𝑢𝑁𝑡 ) (𝑢 − 𝑢𝑁𝑡 )
(1 − 𝑢)2 + 16𝑢5 + 32𝜅3𝑢4

]
, (19)

ℎ4
3(𝑢, 𝜅, 𝑁𝑡 ) =

𝜅4𝑢𝑁𝑡

2𝑁3
𝑐

[
1 + 4𝑢4 + 16𝜅3𝑢4] , (20)

where ℎ1
3, · · · , ℎ4

3 are effective couplings of 𝑆4 coupled to 𝜅4 graphs with different gauge corrections.

3. Numerical results

Since the effective theory depends only on the Polyakov loops, the numerical investigation
for the effective theory can be performed directly with Metropolis updates of the temporal links,
which live on a three-dimensional lattice. The bare fermion mass 𝑎𝑚 is controlled via the hopping
parameter 𝜅 = (2(𝑎𝑚 + 4))−1. Finite temperature on the lattice is given by the inverse temporal
extent of the original lattice, 𝑇 = 1/𝑎(𝛽)𝑁𝑡 . We will work with 𝑁 𝑓 = 1, 2, and at fixed 𝑁𝑡 = 4, 6 for
the effective theory up to order O(𝜅2), and at 𝑁𝑡 = 4 for the O(𝜅4) effective theory. This work aims
to map the phase structure of heavy QCD at zero chemical potential, i.e., in the (𝑢, 𝜅) parameter
space, for different approximations of the effective theory.

The observable used in this work is the Polyakov loop, O ≡ |𝐿 |, which is a true order parameter
of QCD in the limit 𝑚𝑞 → ∞, and signals a phase transition. We then construct the susceptibility,
the skewness and the kurtosis as

𝜒 = 𝑁3
𝑠 (〈O2〉 − 〈O〉2), 𝐵3 =

〈(O − 〈O〉)3〉
〈(O − 〈O〉)2〉3/2 , 𝐵4 =

〈(O − 〈O〉)4〉
〈(O − 〈O〉)2〉2 . (21)

The statistical error of these quantities are determined by a jackknife analysis. A true non-analytic
phase transition can only exist in the infinite volume limit, therefore to extract this transition from

5
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0.4432
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𝑢
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𝜅
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(d) 𝑆𝑔eff + 𝑆0 + 𝑆2, 𝑁 𝑓 = 2, 𝑁𝑡 = 6

Figure 1: The pseudo-critical line for the next-to-leading order effective theory with 𝑁 𝑓 = 1, 2, 𝑁𝑡 = 4, 6
and 𝑁𝑠 = 24. A linear fit was performed for 𝑁𝑡 = 4 according to equation (23).

simulations of finite volumes, an extrapolation with a finite size scaling is needed. One way is
to use the kurtosis 𝐵4 for approaching the infinite volume limit. The critical value of 𝐵4 in the
thermodynamic limit for different orders of the phase transition is given in table 1. The leading
finite size corrections are obtained by performing a Taylor expansion about a critical point in infinite
volume, to which we fit our data,

𝐵4(𝜅, 𝑁𝑠) = 𝐵4(𝜅𝑐 ,∞) + 𝑎1(𝜅 − 𝜅𝑐)𝑁1/𝜈
𝑠 + · · · . (22)

Our investigation proceeds in two steps: first, the pseudo-critical line 𝑢𝑝𝑐 (𝜅) is mapped,
subsequently its critical point (𝑢𝑐 , 𝜅𝑐) is located. The pseudo-critical line is found by fixing values
of 𝜅 and performing a 𝑢-scan at 𝑁𝑠 = 16, 20, 24, identifying the maximum of the susceptibility and
minimum 𝐵4. Results on 𝑁𝑠 = 24 are shown for 𝑁 𝑓 = 1 in figure 1a and for 𝑁 𝑓 = 2 in 1b. Due to
the smallness of 𝜅, the entire line can be parametrised as [13]

𝑢𝑝𝑐 (𝜅) = 𝑢0 − 𝑎1𝜅, (23)
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Figure 2: Example plots of the kurtosis for different orders of the effective theory.

with the following fit results,

𝑎1 = 0.0071(3), 𝑢0 = 0.429192(22), 𝜒2/d.o.f = 0.49, for 𝑁 𝑓 = 1, (24)
𝑎1 = 0.0109(8), 𝑢0 = 0.429448(52), 𝜒2/d.o.f = 1.74, for 𝑁 𝑓 = 2. (25)

However, the linearity does not hold for 𝑁𝑡 = 6 and 𝑁 𝑓 = 1, 2 as illustrated in figure 1c and 1d.

Next, we find the location of the critical end point on the phase boundary. We plot the minimum
values of 𝐵4 against the couplings ℎ, 𝜅 for several volumes, see figure 2, and perform a linear fit
to equation (23). The 𝜒2/d.o.f values of the four fits are between 0.99 − 1.49, indicating good fit
qualities. With the same analysis, we estimate the critical values 𝜅𝑐 also for the 𝜅2-action at 𝑁𝑡 = 6
and for the 𝜅4-action at 𝑁𝑡 = 4. All results are summarized in table 2. One observes that the value
of 𝜅𝑐 for 𝑁 𝑓 = 2 of the same order effective theory is smaller than those of 𝑁 𝑓 = 1. This is because
the explicit center symmetry breaking is stronger with more fermion fields. The same argument
can also be used to explain the decrease of 𝜅𝑐 as the order in the hopping expansion in the effective
theory increases.

7
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eff. theories (preliminary) hopping expanded-QCD [6] Full QCD [7]

𝑁𝑡 action 𝑁 𝑓 = 1 𝑁 𝑓 = 2 𝑁 𝑓 = 1 𝑁 𝑓 = 2 𝑁 𝑓 = 2
𝑆
𝑔
eff + 𝑆0 0.0810(4) - 0.0783(12) 0.0658(10) -

4 𝑆
𝑔
eff + 𝑆0 + 𝑆2 0.0756(6) 0.0629(4) 0.0753(11) 0.0640(10) -

𝑆
𝑔
eff + 𝑆0 + 𝑆2 + 𝑆4 0.0515(16) 0.0443(34) - - -

6 𝑆
𝑔
eff + 𝑆0 + 𝑆2 0.1319(6) 0.1210(5) 0.1326(21) 0.1202(19) 0.0877(9)

Table 2: Comparison of the 𝜅𝑐-values for the deconfinement critical point obtained by different approxima-
tions to lattice QCD with Wilson quarks.

4. Conclusions

In table 2, we also compare our results with those obtained from 4-dimensional QCD simu-
lations in the heavy quark region, in one case with a hopping expanded fermion determinant, in
the other case with no approximations. We see that the phase structure of the 4-dimensional full
QCD is reproduced by the effective theories on a semi-quantitative level, so that their application
to the cold and dense regime can be trusted. Regarding quantitative accuracy, the comparison
with either hopping expanded or full QCD allows for detailed conclusions regarding the strong
coupling and hopping expansions separately: the 3D effective theory agrees almost quantitatively
with the hopping expanded 4D QCD, while both exhibit larger differences with full QCD as 𝑁𝑡

grows. This means that the character expansion shows good convergence behavior and is sufficient
for thermodynamical applications up to 𝑁𝑡 = 6, while higher order corrections are necessary in the
hopping expansion already at 𝑁𝑡 = 6.
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