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In this preprint we present our results on the study of the electromagnetic conductivity in dense
quark-gluon plasma obtained within lattice simulations with # 5 = 2 + 1 dynamical quarks. We
employ stout improved rooted staggered quarks at the physical point and the tree-level Symanzik
improved gauge action. The simulations are performed at imaginary baryon chemical potential,
and the Tikhonov regularisation method is used to extract the conductivity from current-current
correlators. Our results indicate an increase of QGP electromagnetic conductivity with real baryon
density, and this dependence is quite strong.
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1. Introduction

The electromagnetic conductivity is a transport coefficient which parameterises charge trans-
port phenomenon. It is believed that charge transport plays an important role in heavy-ion collision
experiments since collisions of relativistic nuclei generate strong electromagnetic field which influ-
ences the dynamics of the created quark-gluon plasma (QGP). The electromagnetic conductivity of
QGP can be studied in heavy-ion collision experiments through the measurement of the dilepton
emission rate.

It is believed that QGP in heavy-ion collision experiments has nonzero baryon density which
leads to the appearance of additional fermion states. These states might play an important role
in the charge transport phenomena in QGP. In view of this, it is important to study how nonzero
baryon density influences the electromagnetic conductivity of QGP.

The electromagnetic conductivity of quark-gluon matter with nonzero baryon density was
studied in a number of papers within different phenomenological approaches (see, for instance,
[1–4] and references therein). In addition to phenomenological studies, lots of the first-principle
results on the electromagnetic conductivity were obtained within lattice simulation of QCD (see,
for instance, [5–8] and the review of lattice results [9]). Unfortunately, all lattice QCD studies were
carried out at zero baryon density.

In this preprint we are going to present the results of our lattice QCD study of the QGP
electromagnetic conductivity at finite baryon density. To overcome the sign problem the simulations
are carried out at imaginary baryon chemical potential and the results are analytically continued to
real values of the baryon chemical potential.

2. The lattice set-up

In our study we consider the partition function for # 5 = 2 + 1 QCD with chemical potentials
` 5 ( 5 = D, 3, B) coupled to quark number operators, Z(), `D , `3 , `B), in a setup for which
`D = `3 = `�/3, `B = 0. The path integral formulation of Z(), `�), discretized via improved
rooted staggered fermions and adopting the standard exponentiated implementation of the chemical
potentials, reads

Z =

∫
D*4−SYM

∏
5 =D,3,B

det
[
"
5
st (*, ` 5 )

]1/4
, (1)

where
SYM = − V

3

∑
8,`≠a

(
5
6
,1×1
8;`a −

1
12
,1×2
8;`a

)
(2)

is the tree-level Symanzik improved action (,=×<
8;`a stands for the trace of the = × < rectangular

parallel transport in the `-a plane and starting from site 8), and the staggered fermion matrix is
defined as

"
5
st (*, ` 5 ) = 0< 5 X8, 9 +

4∑
a=1

[8;a

2
[
40` 5 Xa,4*

(2)
8;a X8, 9−â

− 4−0` 5 Xa,4* (2)†
8−â;aX8, 9+â

]
, (3)
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where* (2)
8;a are two-times stout-smeared links, with isotropic smearing parameter d = 0.15.

We consider two values of temperature ) = 200, 250MeV; most simulations are carried out
on a 12 × 483 lattice, with spacings 0 = 0.0820 fm and 0 = 0.0657 fm correspondingly. To
check the lattice spacing dependence we also consider a 10 × 483 lattice with 0 = 0.0988 fm and
0 = 0.0788 fm. Notice that the introduction of nonzero baryon chemical potential leads to the sign
problem. In order to overcome it we carry out lattice simulations with imaginary baryon chemical
potential `� with the following values: `� /3c) = 0.0, 0.140, 0.200, 0.245, 0.285 for all lattices and
lattice spacings under consideration.

In Table 1 we report the lattice parameters used in the simulations. $ (100) decorrelated gauge
configurations have been used for each simulation point. Bare parameters have been chosen so as
to stay on a line of constant physics with physical quark masses.

0, fm !B #C ) ,MeV <;0 <B0 `� /3c) 2())

0.0988 48 10 200 0.0014 0.0394
0.0, 0.14, 0.20,
0.245, 0.285

0.0060(14)

0.0788 48 10 250 0.001119 0.031508
0.0, 0.14, 0.20,
0.245, 0.285

0.0086(14)

0.0820 48 12 200 0.001168 0.032872
0.0, 0.14, 0.20,
0.245, 0.285

0.0076(14)

0.0657 48 12 250 0.000917 0.025810
0.0, 0.14, 0.20,
0.245, 0.285

0.0084(10)

Table 1: Parameters used in the numerical simulations and the values of the coefficient 2()) from formula
(17).

To calculate the conductivity we follow our previous work [8]. The measurement of conduc-
tivity consists of two parts: correlation function measurement and spectral function extraction via
the Kubo formula inversion. The correlation function reads

�8 9 (g) =
1
!3
B

〈�8 (g)� 9 (0)〉, (4)

where g is the Euclidean time and �8 (g) is the conserved current

�8 (g) =
1
4
4
∑
5

@ 5

∑
®G
[8 (G)

(
j̄
5
G 4

0` 5 Xa,4*
(2)
G,8
j
5

G+8+

j̄
5

G+84
−0` 5 Xa,4* (2)†

G,8
j
5
G

)
,

(5)

where G = (g, ®G), [8 (G) = (−1)G1+..G8−1 , 8 = 1, 2, 3, j̄ 5G , j
5
G are staggered fermion fields of 5 =

D, 3, B flavours.
The staggered fermion correlator (4) corresponds to two different operators for the even g =

2= × 0 and odd g = (2= + 1) × 0 slices. In the continuum limit �8 9 (g) reads

�
e, o
8 9
(g) =

∑
®G

(
〈�8 (G)� 9 (0)〉 − Be, o〈�8 (G)� 9 (0)〉

)
, (6)
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where Be, o = (−1)g is the timeslice parity and

�8 = 4
∑
5

@ 5 k̄
5 W8k

5 , �8 = 4
∑
5

@ 5 k̄
5 W5W4W8k

5 ,

and k 5 is Dirac spinor of the flavor 5 . Notice that the operator �8 corresponds to electromagnetic
current in the continuum whereas we would like to remove the �8 contribution.

Next let us recall that the current-current Euclidean correlators both for even and odd slices
�
e, o
8 9

are related to its spectral functions de, o
8 9
(l) as

�
e, o
8 9
(g) =

∫ ∞

0

3l

c
 (g, l)de, o

8 9
(l), (7)

where  (g, l) = cosh l (g−V/2)
sinh lV/2 , V = 1/) . The electromagnetic conductivity f8 9 is related to the

spectral densities de, o
8 9
(l) through the Kubo formulas

f8 9

)
=

1
2)

lim
l→0

1
l

(
de8 9 (l) + do8 9 (l)

)
. (8)

The contribution of the correlator 〈�8 (g)� 9 (0)〉 to the sum d4
8 9
+ d>

8 9
cancels out and in

the continuum limit the electromagnetic conductivity is reproduced. Similarly to [5–8] in this
calculation of the correlation function (4) only connected diagrams are taken into account.

3. Calculation of the electromagnetic conductivity

Given the correlation functions �e, o
8 9
(g) one needs to invert the integral equation (7) and

determine spectral functions de, o
8 9
(l) to find the conductivity. In this paper we going to apply

model independent approach which is called Tikhonov regularization (TR) [10] method to extract
the conductivity. A similar approach widely used for the reconstruction of spectral densities is
Backus-Gilbert (BG) method [11]. These methods were applied for the reconstruction of the shear
and bulk viscosities [12, 13], electromagnetic conductivity [6, 8] of QGP. Our study shows that both
approaches give equivalent results for the electromagnetic conductivity of QGP at finite baryon
density. For this reason to obtain the results presented below we apply TR method.

The TR method is a non-parametric linear approach which can be used to study the spectral
function. This method is aimed at the solution of the equation

� (g) =
+∞∫

0

3l

2c
d(l)
5 (l) (g, l), (9)

where  (g, l) = cosh l (g−V/2)
sinh lV/2 5 (l), and 5 (l) is an arbitrary function. In linear methods, one

reconstructs the estimator d̄(l̄) of the spectral function in the following form:

d̄(l̄) = 5 (l̄)
∑
8

@8 (l̄)� (g8), (10)
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where @8 (l̄) are some functions, which exact expressions will be discussed later. Combining
Eqs. (9) and (10), one gets the following relation between the estimator d̄(l̄) and the spectral
function d(l):

d̄(l̄) = 5 (l̄)
∞∫

0

3l X(l̄, l) d(l)
5 (l) , (11)

where the resolution function X(l̄, l) is given by the formula:

X(l̄, l) =
∑
8

@8 (l̄) (G8 , l). (12)

If the resolution function has a sharp peak around l̄ and normalized to 1, according to
Eq. (11) the estimator d̄(l̄) is a very good approximation to the spectral function d(l). E.g., if
X(l, l̄) = X(l − l̄) the estimator of the spectral function would exactly reproduce the spectral
function d̄(l̄) = d(l̄). In real calculation the resolution function has a peak of finite width of few
) , thus the estimator d̄(l̄) averages the spectral function over the region of several ) . In particular,
in our calculations at l̄ = 0 the width of the resolution function is ∼ 4) .

Nowwewould like to note that the TRmethod can reliably reconstruct d(l = 0) if the resolution
function X(l̄ = 0, l) is narrower than the characteristic variation scale of d(l). Correlation
functions of the electromagnetic currents are well described by either the ansatz combining the
transport peak at small frequencies and UV contribution at large frequencies [5–7] or by the
AdS/CFT spectral function [7]. Within the temperature interval considered in this paper the widths
of X(l̄ = 0, l) are close to or smaller than the variation scale of d(l) obtained in [5–7]. For this
reason we believe that both approaches give reliable results for the conductivity extracted from such
spectral functions.

Further let us discuss how one should select functions @8 (l̄) in Eq. (10). One of the reasonable
ways is to require the minimization of the width of X(l̄, l). In particular, one finds the functions
@8 (l̄) which minimize the the following functional:

A =

∫ ∞

0
3l X2(l̄, l) (l − l̄)2. (13)

The minimization procedure gives the following expressions

@8 (l̄) =
∑
9,
−1
8 9
(l̄)'(G 9)∑

: 9 '(G:),−1
: 9
(l̄)'(G 9)

, (14)

,8 9 (l̄) =
∞∫

0

3l  (G8 , l) (l − l̄)2 (G 9 , l), (15)

'(G8) =
∞∫

0

3l  (G8 , l). (16)

Notice, however, that the narrower the resolution function X(l̄, l) the larger number of terms
in formula (11) with alternating sign. For this reason the method become unstable and susceptible
to noise in the data. Thus, it is required to carry out regularization that should be properly adjusted.

5
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In the TR method one regularises the SVD decomposition of ,−1 = +�*) . The diagonal
matrix � = diag

(
f−1

1 , f−1
2 , . . . , f−1

=

)
might have very large entries that represent the susceptibility

of the data to noise. The regularization is done by adding the regularizer W to all entries as
�̃ = diag

(
(f1 + W)−1, (f2 + W)−1, . . . , (f= + W)−1) . Thus, small f8 will be smoothly cut-off. In

Fig. 1 we plot typical resolution functions for the TR regularization at l̄ = 0.

0 5 10 15 20

ω/T

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
δ(
ω̄
,
ω

)
even ω̄ = 0 odd ω̄ = 0

Figure 1: Typical resolution functions for the even and odd branches at ) = 200MeV.

In the reconstruction procedure one has to choose the value of the parameter W. In order to
do this we follow the approach proposed in paper [8]. Briefly, this approach can be described as
follows. In the region of sufficiently small W (weak regularization) the method becomes unstable
what manifests itself in large statistical uncertainties rising with the decrease of W. In addition,
in the same region the reconstructed conductivities and the widths of the even and odd resolution
functions reach plateaus. Since the resolution function width does not decrease below some value
of W, the decrease of the W below this value does not make the reconstruction more accurate. On
the contrary, in the region of large W the method is stable with small uncertainties at the cost of
strong regularization. The widths of the resolution functions are growing and spectral function is
averaged over a large region which is not appropriate for the conductivity reconstruction. In order
to safely choose the region of regularization uncertainty, we restrict ourselves from below by the
value of W where the plateaus of the reconstructed conductivities and the widths are saturated and
from above by the value of W where both resolution functions have the width smaller than 4.7) .
Our calculations show that these restrictions give safe estimation of the uncertainties. This results
in the variation region roughly W ∈ (0.1, 10). The exact regions depend on the lattice parameters
(chemical potential and temperature).

Thus, we restrict ourselves to the region W ∈ (0.1, 10) where the method is stable and the
resolution is sufficiently narrow ∼ 4) . The uncertainties of our results were estimated as the total
variation of the conductivity including statistical uncertainties as the W parameter is varied within
the region W ∈ (0.1, 10).

Having described the TR method we proceed to the calculation of the electromagnetic conduc-
tivity which is carried out in the following steps. Firstly, wemeasure the lattice correlation functions
�
e, o
8 9
(g) (6). Then we calculate the estimators d̄e, o(l̄)/l̄ at l̄ = 0 within the TR approach. Finally

using Eq. (8) we calculate the electromagnetic conductivity.

6
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An important issue in the calculation is the ultraviolet (UV) contribution to the reconstructed
conductivity. For the conductivity the UV contribution scales as d ∝ l2 and our study carried out
in [8] shows that the UV gives ∼ 20 − 30 % contribution at l̄ = 0.

In principle, one could subtract the UV contribution from the correlation function (6) (see
[8] for details). However, this approach gives rise to a quite large uncertainty. To reduce this
uncertainty we are going to apply the following approach. Instead of the correlation functions �e, o

`�

we consider the differenceΔ�e, o = �e, o
`� −�

e, o
`�=0. Since, for the chosen values of the lattice spacing,

the UV regime starts at l0 ∼ 2GeV [8], we note that `� � l for all frequencies in the UV regime
and baryon chemical potential. Thus, one can consider the UV spectral function independent on
the imaginary baryon chemical potential and assume that the differences Δ�e, o do not contain the
UV contribution. The results for Δ�e, o turn out to be more accurate since the UV–estimation
uncertainty is absent in this case. The correlator Δ�e, o is related to additional conductivity due
to the presence of the imaginary baryon chemical potential. In our further study we apply the TR
approach to the differences Δ�e, o.

4. Results

The change of the electromagnetic conductivity due to non-zero imaginary baryon chemi-
cal potential Δf = f`� − f`�=0 normalized to )�em (�em = 42 ∑

5 @
2
5
) at temperatures ) =

200, 250MeV is shown in Fig. 2.
Now few comments are in order.

1. In order to study discretization effects we carried out the study for two lattice spacings for
each temperatures. For ) = 200MeV 0 = 0.0820, 0.0988 fm whereas and for ) = 250MeV
0 = 0.0657, 0.0788 fm (see lattice parameters in Table 1). From Fig. 2 one sees that the
results obtained at different lattice spacings agree within the uncertainties.

2. It is also seen that the results are well described by the quadratic polynomial

Δf

)�4<
= −2())

(
`�

)

)2
, (17)

which after analytical continuation to real chemical potential becomes

Δf

)�4<
= 2())

(
`�

)

)2
. (18)

Because of the uncertainties we don’t see the dependence of the coefficient 2()) on temper-
ature (see Table 1).

3. To overcome the sign problem our simulation are carried out at imaginary chemical potential.
Notice also that for all lattice parameters under study, the coefficient 2()) > 0. So, after
analytical continuation one can conclude that the conductivity raises with baryon chemical
potential. This conclusion is in agreement with the expectation that baryon chemical potential
introduces additional fermion states to QGP which leads to rise of the conductivity.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
9

Electromagnetic conductivity of quark-gluon plasma at non-zero baryon density A. Trunin

At the end of this preprint let us discuss the values of the coefficient 2()) which are presented
in Table. 1. If one takes into account that the characteristic value of the ratio f())/)�4< in the
region ) ∈ (200 − 250) MeV is ∼ 0.2 (see Fig. 3 in the review [9]), the conductivity at `D,3 ∼ )
raises by ∼ 30% as compared to zero baryon density1. We believe that this is quite considerable
response of transport properties of QGP to non-zero baryon density. Our results for the 2()) are
in a reasonable agreement with the results of papers [1, 2] and they are larger than that in papers
[3, 4]. We would like also to mention the paper [14] where the authors carried out lattice study of
the conductivity in dense two-color QCD. Their results for the 2()) are smaller than our values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

µI/T

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

∆
σ
/(
T
C

em
)

a = 0.0988 fm

a = 0.0820 fm

0.0 0.5 1.0 1.5 2.0 2.5 3.0

µI/T

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

∆
σ
/(
T
C

em
)

a = 0.0788 fm

a = 0.0657 fm

Figure 2: The electromagnetic conductivities due to non-zero imaginary baryon chemical potential Δf =

f`� −f`�=0 as a function of `� /) normalized to )�4< for ) = 200MeV (left figure) and ) = 250MeV (right
figure). In order to study the dependence of our results on lattice spacing, the calculations were carried out
at two lattices 10 × 483 and 12 × 483 for each temperature.

5. Conclusion

In this preprint we present our results on the study of the electromagnetic conductivity in dense
quark-gluon plasma obtained within lattice simulations with # 5 = 2 + 1 dynamical quarks. We
employ stout improved rooted staggered quarks at the physical point and the tree-level Symanzik
improved gauge action. The simulations are performed at imaginary chemical potential, and the
Tikhonov regularisation method is used to extract the conductivity from current-current correlators.
The results for the conductivity extracted in this way are analytically continued to real values of
baryon chemical potential. Our study indicates that electromagnetic conductivity of quark-gluon
plasma raises with real baryon density, and this dependence is quite strong.
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