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Results are presented on the neutron electric dipole moment using an ensemble of Nf =

2 + 1 + 1 twisted mass clover-improved fermions with lattice spacing of a ≃ 0.08 fm and
physical pion mass (mπ ≃ 139 MeV). The approach followed in this work is to compute
the CP -odd electromagnetic form factor F3(Q

2 → 0) at zero momentum transfer by
expanding the action to leading order in θ. This gives rise to correlation functions that
involve the topological charge, for which we employ a fermionic definition by means of
spectral projectors. We include a comparison between the results using the fermionic
and the gluonic definition, where for the latter we employ the gradient flow. We show
that using spectral projectors leads to half the statistical uncertainty on the evaluation
of F3(0). Using the fermionic definition, we find a value of |dN | = 0.0009(24) θ e · fm.
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1. Introduction

We present results on the neutron electric dipole moment (nEDM) induced by a QCD
Lagrangian of the form

LQCD (x) =
1

2g2
Tr [Fµν (x)Fµν (x)] +

∑
f

ψf (x) (γµDµ +mf )ψf (x)− iθq (x) , (1)

written in Euclidean time. The first two terms are CP -conserving while the θ-term is CP -
violating and thus can give rise to a non-zero nEDM. In the above expression, ψf denotes
a fermion field of flavor f with bare mass mf , Fµν is the gluon field tensor and q (x) is the
topological charge density, which in Euclidean space, is defined as

q (x) =
1

32π2
ϵµνρσTr [Fµν (x)Fρσ (x)] . (2)

Up to date no finite nEDM value has been measured in experiments. The currently best
measured upper bound for the nEDM is that given in Ref. [1] as |d⃗N | < 1.8 × 10−13e ·
fm (90% CL), measured at the Paul Scherrer Institute (PSI) in Switzerland. From effective
field theory calculations [2–5] one derives θ ≲ O

(
10−10 − 10−11

)
using the experimental

bound. However, a direct determination of the θ-induced nEDM from the QCD Lagrangian
of Eq. (1) would require a non-perturbative calculation. The lattice QCD formulation
provides an ideal framework to accomplish this task and several attempts to determine the
θ-induced nEDM are already present in literature [6–16]. The method used in our work
involves the calculation of the CP -odd F θ

3 (Q
2) electromagnetic form factor, that, in the

limit of low momentum transfer, gives rise to the following expression for the nEDM [17]:

|d⃗N | = lim
Q2→0

|F θ
3 (Q

2)|
2mN

, (3)

where mN denotes the mass of the neutron and Q2= − q2 the four-momentum transfer
in Euclidean space (q=pf − pi). The θ index on F θ

3 indicates that the form factor is θ-
dependent and it would be zero if θ = 0. It is worth noting that the θ-term is imaginary
in Euclidian time, thus lattice configurations cannot be generated directly at θ ̸= 0. One
standard approach to overcome this issue is to expand the expectation value of a general
operator ⟨O⟩θ in terms of CP−violating powers of θ, namely

⟨O⟩θ =
1

Zθ

∫
[dU][dψ̄][dψ]Oe−SQCD(1+iθQ+O(θ2)) ≃ ⟨O⟩θ=0+iθ ⟨OQ⟩θ=0+O(θ2) , (4)

where ⟨O⟩ is the expectation value computed using the standard CP−preserving action
with θ = 0, and Q is the integral over space-time of the topological charge density, which
gives the total topological charge.

As a consequence of this expansion, the two- and three-point functions that enter the
computation of F θ

3 are modified by the insertion of the topological charge, that can introduce
large statistical fluctuations. Therefore, estimating these correlation functions requires a
huge amount of statistics, making the study of the nEDM via lattice QCD a notoriously
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challenging task from the point of view of computational cost. Often, nEDM studies are
conducted with ensembles at larger-than-physical pion mass, that are cheaper, and then a
chiral continuum extrapolation to the physical point is performed. However, this approach
introduces systematics related to the chiral extrapolation, that are difficult to keep under
control. In this work, we perform a first-principles study directly at the physical pion mass
and investigate instead the impact of an alternative lattice discretization of the topological
charge on the relevant correlation functions. This is motivated by previous studies [18]
from which it emerged that different lattice definitions provide compatible results in the
continuum limit while, at finite lattice spacing, definitions based on spectral projectors are
less affected by cut-off effects. One of the questions in this study is how this impacts the
quality of the signal in our determination of the nEDM.

2. Method

The method used in this work has been firstly proposed in Ref. [8] and subsequently
widely used in Refs. [10, 11, 14–16]. As anticipated in the previous section, it relies on
the calculation of the CP -odd F θ

3 (Q
2) form factor by treating the θ-parameter as a small

perturbation. In the presence of a CP−violating term, the matrix element of the electro-
magnetic current ⟨N(p′, s′)|J µ

e.m.|N(p, s)⟩θ = ūθN (p′, s′) [Γµ(q)]uθN (p, s), can be rewritten in
terms of four form factors as follows

Γµ(q) = F1(Q
2)γµ +

(
F2(Q

2) + iγ5F
θ
3 (Q

2)
) iσµνqν

2mθ
N

+ FA(Q
2)
(/qqµ − q2γµ)γ5

mθ,2
N

. (5)

The electromagnetic current is given by J µ
e.m. =

∑
f ef ψ̄fγ

µψf , where ef is the electric
charge of the quark field ψf and ūθN (p′, s′) is the nucleon spinor in the presence of the θ-
term. F1(Q

2) and F2(Q
2) are the Dirac and Pauli electromagnetic form factors respectively,

F θ
3 (Q

2) is the CP -odd form factor and FA(Q
2) is the anapole form factor, that vanishes for

C-preserving actions. They are all expressed as functions of the Euclidean four-momentum
transfer squared Q2. On the lattice, the above matrix elements can be extracted from the
Euclidean three-point function given by

G
µ,(θ)
3pt (p⃗f , q⃗, tf , tins) ≡ ⟨JN (p⃗f , tf )|J µ

e.m.(q⃗, tins)|J̄N (p⃗i, ti)⟩θ , (6)

where JN (p⃗f , tf ), J̄N (p⃗i, ti) are the nucleon interpolating operators that respectively create
a nucleon at time ti (source) with momentum p⃗i and annihilate it at time tf (sink) and
momentum p⃗f . If we insert a complete set of energy and momentum eigenstates and limit
ourselves to the ground state contribution, Eq.(6) becomes

G
µ,(θ)
3pt (p⃗f , q⃗, tf , tins, ti) ≃ |Zθ

N |2e−Ef
N (tf−tins)e−Ei

N (tins−ti)

eiα
θ
Nγ5

(−i/pf +mθ
N

2Ef
N

)
Γµ(q)

(
−i/pi +mθ

N

2Ei
N

)
eiα

θ
Nγ5 , (7)

with Ei
N ≡ EN (p⃗i) =

√
p⃗2i + (mθ

N )2, Ef
N ≡ EN (p⃗f ) =

√
p⃗2f + (mθ

N )2 and Zθ
N being some

unknown normalization coefficient related to the overlap between the interpolating opera-
tors and the nucleon state. The appearance of the so called mixing angle αθ

N in Eq. (7)

3
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arises due to the CP -violation induced by the θ-term, that mixes nucleon eigenstates with
defined parity. As stated in the previous section, we treat θ as a small perturbation.
For this reason, quantities in the r.h.s of Eq.(7) can be safely replaced by their leading-
order terms in θ expansion, as follows: mθ

N ≃ mN + O(θ2) , Zθ
N ≃ ZN + O(θ2) and

αθ
N ≃ α

(1)
N θ + O(θ3), F θ

3 (Q
2) ≃ F

(1)
3 (Q2)θ + O(θ3), while higher order contributions can

be neglected. Therefore, in the following we will simply refer to the mixing angle and the
CP -odd form factor as αN and F3(Q

2), correspondingly. Using Eq. (4) the expectation
value in the l.h.s. of Eq. (7) can be rewritten in terms of Gµ,(0)

3pt = ⟨JNJ µ
e.m.J̄N ⟩0 and

G
µ,(0)
3pt,Q = ⟨JNJ µ

e.m.Q J̄N ⟩0 that are computed using configurations generated with the stan-
dard CP -symmetric action. Then, one can relate these two correlation functions to the
CP -even and the CP -odd parts of the right hand side (r.h.s.) of Eq. (7). The form factor
can be extracted by choosing an appropriate ratio of three- and two-point functions in or-
der to cancel unknown normalization coefficients. Similarly, one can estimate the nucleon
mixing angle αN by expanding the relation

G
(θ)
2pt(p⃗f , tf ) ≡ ⟨JN (p⃗f , tf )J̄N (p⃗i, ti)⟩θ = |Zθ

N |2e−EN (tf−ti)
−i/pf +mθ

Ne
i2αθ

Nγ5

2EN
, (8)

in powers of θ. This allows to extract αN from the two-point functions G(0)
2pt and G(0)

2pt,Q.

3. Lattice setup

For this work, we employ an ensemble of Nf = 2 + 1 + 1 twisted mass fermions, with
2 degenerate light quarks, up and down, plus the strange and charm quarks as a non-
degenerate twisted doublet, at maximal twist. The insertion of a clover term ensure the
suppression of cut-off effects, reducing the difference between the mass of the charged and
neutral pions [19]. For the gluonic sector, we use the Iwasaki improved gauge action [20],
with Symanzik coefficients set to c0 = 3.648 and c1 = (1 − c0)/8. All quark masses
are tuned close to their physical values. In particular, mπ = 139(1) MeV and mN =

940(2) MeV, the lattice size 643 × 128 and the lattice spacing a = 0.0801(4) resulting
in mπL = 3.62. We will refer to this ensemble as cB211.72.64. More details about the
generation of this ensemble can be found in Ref. [19]. For the computation of the nucleon
two- and three-point functions we employ the standard proton interpolating field JN (x) =

ϵabc
[
ua,T (x)Cγ5db(x)

]
uc(x), where u(x) and d(x) are up and down quark fields in the

physical base, and C = iγ2γ4 is the charge conjugation matrix. Since up and down quarks
are degenerate in our formulation, the proton and neutron are degenerate. We use Gaussian
smeared quark fields [21, 22], with 125 smearing steps and parameter αG = 0.2, in order to
improve the overlap with neutron ground state. Gauge links entering the smearing operator
are APE-smeared (50 steps with αAPE = 0.5 ). For the electromagnetic current J µ

e.m.(x) we
use the symmetrized lattice conserved vector current, as defined for instance in Ref. [23],
that does not need renormalization. The reason we symmetrize is to reduce cut-off effects.
The explicit expression for the projected two- and three-point are

4
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G2pt(Γ0, p⃗f , tf , ti) ≡
∑
y⃗

Tr
[
Γ0 ⟨JN (y⃗, tf )J̄N (x⃗, ti)⟩

]
e−p⃗f (y⃗−x⃗) , (9)

G2pt,Q(γ5, p⃗f , tf , ti) ≡
∑
y⃗

Tr
[γ5
4

⟨JN (y⃗, tf )Q J̄N (x⃗, ti)⟩
]
e−p⃗f (y⃗−x⃗) , (10)

Gµ
3pt(Γk, q⃗, p⃗f , tf , tins, ti) ≡

∑
y⃗,z⃗

Tr
[
Γk ⟨JN (y⃗, tf )J µ

e.m.(z, tins) J̄N (x⃗, ti)⟩
]
e−p⃗f (y⃗−x⃗)eq⃗(z⃗−x⃗) ,

(11)

Gµ
3pt,Q(Γk, q⃗, p⃗f , tf , tins, ti) ≡

∑
y⃗,z⃗

Tr
[
Γk ⟨JN (y⃗, tf )J µ

e.m.(z, tins)Q J̄N (x⃗, ti)⟩
]
e−p⃗f (y⃗−x⃗)eq⃗(z⃗−x⃗) ,

(12)

where Γ0 =
1
4(1+ γ0) and Γk = iΓ0γ5γk.

At this stage, we consider only connected contributions to the three-point functions.
These are computed, using sequential inversions through the sink, at final momentum p⃗f = 0⃗

and keeping fixed the sink-source time separation to tf − ti = 12a. Larger sink-source
separations provide compatible results within errors, and a more careful analysis of the
excited states, even if desirable, would require a prohibitively high statistics. For the
analysis, we use 750 gauge configurations, separated by 4 trajectories each. We use 200

source positions for the computation of the two-point functions for the determination of the
mixing angle, corresponding to ∼ 150k data, and 54 source position (equivalent to ∼ 40k
data) for the computation of three-point correlators involved in the extraction of F3.

4. Topological charge

We use two different lattice discretizations for Q. The fist choice has been firstly
proposed in Ref. [24] and is widely used in literature. It is the discrete counterpart of Eq. 2
integrated over space-time, where the gluonic field tensor is replaced with a ’clover’ term,
i.e. a "clover leaf" path Cµν , made by the sum of the plaquettes Pµν(x) centered in x and
with all the possible orientations in the µν-plane, given by

QL =
1

32π2

∑
x

ϵµνρσTr [Cµν(x)Cρσ(x)] . (13)

This operator is even under parity transformations and exhibits O(a2) discretization effects.
We use the gradient flow [25] with the standard Wilson action as smoothing action in
order to suppress the UV fluctuations of the gauge field that enter Cµν . The elementary
integration step is ϵ = 0.01 and the topological charge is computed on the smoothed fields
at multiples of ∆τflow = 0.1. The flow time is chosen by studying the dependence of our
final quantities on τflow and searching for a plateau region.

The second definition of the topological charge we employed is based on spectral pro-
jectors as described in Refs. [26, 27]. This definition allows one to extract the topological

5
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charge from the spectrum of the hermitian Wilson-Dirac operator D†
WDW , using the rela-

tion

Q =
ZS

ZP

λi<M2
0∑

i

u†iγ5ui , Mthr = Z−1
P M0 , (14)

where ui is the eigenvector related to the i-th eigenvalue λi, ZP and ZS are the renormal-
ization constants of the pseudoscalar and scalar densities, respectively, and M0 is the bare
spectral threshold. It bounds the modes that enter into the sum in Eq. (14) by requiring
λi < M2

0 . We use ZP = 0.462(4) [28] and ZS = 0.620(4) (for details about our renormal-
ization program see Refs [28–30]). We calculate the lowest 200 eigenvalues of the squared
twisted mass Dirac operator using the Implicitly Restarted Lanczos Method (IRLM) where
polynomial acceleration is employed. Using the values of ZS and ZP quoted above, this cor-
responds to a threshold Mthr that varies in the range 0÷ 65 MeV. In the rest of the paper,
we will refer to the definition of Eq. (13) as “gluonic" or “field theoretic" definition of the
topological charge, while the one defined by Eq. (14) will be referred to as the “fermionic"
or “spectral projectors" definition.

5. Results

For a discussion of the behavior of the topological charge see Ref. [31]. The mixing
angle αN is extracted from the following ratio of two-point functions at zero-momentum

αN = lim
tf→∞

G2pt,Q(Γ5, 0⃗, tf )

G2pt(Γ0, 0⃗, tf )
, (15)

where G2pt,Q and G2pt are defined in Eq. (10) and Eq. (9), and ti = 0 thus the dependence
on ti is suppressed. The ratio in Eq. (15) is illustrated in Fig. 1 as a function of tf/a.
We use both the gluonic (left panel) and the fermionic (right panel) definitions for the
topological charge.

5 10 15 20 tf/a
0.00

0.05

0.10

0.15

0.20

0.25
αN

field theo.

5 10 15 20 tf/a
0.00

0.05

0.10

0.15

0.20

0.25
αN

spectral proj.

Figure 1: Value of the ratio in Eq. (15), as a function of tf/a, using the two definitions of the
topological charge, gluonic definition of Eq. (13) at τflow = 3.5 (left) and fermionic definition of
Eq. (14) with Mthr = 64.98 MeV (right). With the blue (left) and red (right) bands we show the
result of a constant fit within the plateau. With the grey band we show the corresponding fits when
using for the fit a constant plus an exponential term which takes into account the first excited state.
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We seek for a plateau region that we identify in the range tf/a ∈ [9, 18] and tf/a ∈
[10, 18] for the gluonic and fermionic definitions, respectively. Results of constant fitting
are represented by the coloured boxes in Fig. 1 and read αN = 0.202(20)(4) for the gluonic
topological charge and αN = 0.128(9)(3) for the fermionic one, where errors are respectively
the statistical and the systematic one. The latter is obtained by varying the initial time
slice of the plateau range in the interval [8, 12] and the final one in [17, 20] and taking the
largest difference between the mean values. For both definitions of Q, it is negligible if
compared to the statistical uncertainty. We also tried an exponential Ansätz (grey band of
Fig. 1) that provides compatible results, further validating the choice of the plateau region.

From Eq. (12) and Eq. (12) we define

Πµk
3pt,Q(q⃗) ≡ lim

tf ,tins→∞

Gµ
3pt,Q(Γk, q⃗, tf , tins)

G2pt(Γ0, 0⃗, tf )
R2pt , (16)

where p⃗f = 0⃗ and R2pt reads

R2pt ≡
√
G2pt(Γ0, q⃗, tf − tins)G2pt(Γ0, 0⃗, tins)G2pt(Γ0, 0⃗, tf )

G2pt(Γ0, 0⃗, tf − tins)G2pt(Γ0, q⃗, tins)G2pt(Γ0, q⃗, tf )
. (17)

This ratio cancels unknown overlaps and exponential time dependence at large tf and tins
times. Following the same steps that lead to Eq. (55) of Ref. [13] with correction proposed
in Ref. [32], one can express Π0k

3pt,Q in terms of form factors as follows

Π0k
3pt,Q(q⃗) =

iqkC
2mN

(
αNGE(Q

2)− F3(Q
2)

2mN
(EN +mN )

)
, (18)

where EN is the initial energy of the nucleon, C =
√
(2m2

N )/(EN (EN +mN )) is a kinematic
factor and GE(Q

2) = F1(Q
2) + (q2/(2m2

N ))F2(Q
2) is the electric Sachs form factor. It can

be obtained from Π00
3pt (see Eq. (A4) of Ref. [23]). We invert Eq. (18) to extract F3 form

factor Π00
3pt and Π0k

3pt,Q ratios. While the former exhibits a clear signal [23], the latter is
affected by large uncertainties. This can be seen in Fig. 2, where values of Π0k

3pt,Q as a
function of the insertion time tins are reported for the smallest three non-zero values of the
momentum transfer squared, i.e. Q2 = 0.056 GeV2, Q2 = 0.111 GeV2 and Q2 = 0.164 GeV2

Data reported are at fixed sink-source time separation tf = 12a and we averaged among
momenta with non-zero k-component in all k-directions. We fit the ratio in symmetric
intervals [−tfit, tfit] and vary the fit ranges, taking tfit = 2, 3, 4. However, the systematic
calculated in this way is negligible if compared to the large statistical uncertainty.

In Fig. 3 we report F3(Q
2) as a function of Q2. We take the weighted average of the

values at the three smallest Q2 as the extrapolation of F3(Q
2) to Q2 = 0. More involved

fit forms are not viable with this level of uncertainty.
This leads to our final results for dθN :

field theoretical or gluonic definition |dθN | = 0.0018(56) θ e · fm , (19)

fermionic definition via spectral projectors |dθN | = 0.0009(24) θ e · fm . (20)
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Figure 2: Ratio of Eq. (16) as a function of insertion time tins at fixed sink-source time separation
tf = 12a. The three smallest values of the momentum transfer squared are shown. In the first
row, we show results using the gluonic definition of Q and (τflow = 3.5), while in the second row,
the results are obtained using the spectral projectors for the computation of Q and (Mthr = 64.98

MeV). The bands are the result of a constant fit in the plateau region excluding symmetrically 3 and
4 time slices for the gluonic (top panel) and fermionic (bottom panel) definition of Q, respectively.
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0.015

F3

2mN
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spectral proj.

Figure 3: F3(Q
2) as a function of Q2, using a the field theoretical or gluonic definition of the

topological charge (left panel) and the fermionic definition based on spectral projectors (right panel).
The blue and red bands represent the weighted average of the values at the 3 smallest Q2 values.

If we take the absolute error as a bound for the magnitude of the nEDM, we find that
the definition of the topological charge via spectral projectors is 2 times more accurate than
that from the gluonic definition. Therefore, the additional cost due to the computation of
the eigenmodes for the fermionic definition of Q, is compensated by the increased precision.
The dependence of F3(Q

2) using spectral projectors on the cut-off Mthr shows that the
mean value of the form factor does not depend on Mthr and only the error increases with
increasing Mthr, as shown in Fig. 4.
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Figure 4: Dependence of the F3(0) on the smoothing scale τflow for the gluonic (upper row)
and cut-off Mthr for the fermionic (bottom row) definitions used in computation of the topological
charge, for the three smaller values of the momentum transfer squared.

6. Conclusions

A comparison of our result with those of other recent lattice QCD studies is shown
in Fig. 5 we provide a for a similar lattice spacing. Our value is compatible with the
result at the physical point presented in Ref [16], that, however, shows a 4 times larger
uncertainty. Since the errors grow with decreasing pion mass and so does the computational
cost, achieving such an accuracy it is a major outcome of our work. Moreover, the accuracy
of the extrapolation of the nEDM to the physical point obtained in Ref. [15], i.e. |dθN | =
0.00152(71)θ e · fm, is due to the chiral continuum extrapolation, where systematic errors
from using chiral expressions cannot be determined. Their actual data have uncertainties
similar to this work.

We found that the fermionic definition of Q leads to a two-fold increase in statistical
accuracy in the determination of the nEDM as compared to the gluonic definition. This
allows us to obtain a value for the nEDM at the physical point to unmatched precision

|dθN | = 0.0009(24) θ e fm . (21)

Ruling out a zero value would require at least a 2-orders-of-magnitude increase in statistics.
Alternative approaches, like using configurations generated with an imaginary θ-term will
be considered in future investigations.
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Figure 5: Comparison with other lattice QCD determinations of nEDM. Values from Refs. [8, 12,
13] (dashed error bars) are corrected using Table III of Ref. [32], where the spurious contribution
coming from F2(Q

2) is subtracted. See Ref. [32] for further details.
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