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Toward dense QCD in quantum computers
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Lattice QCD at nonzero baryon density is a big challenge in hadron physics. In this presentation,
I discuss the quantum computation of lattice gauge theory at nonzero density. I show some
benchmark results of the Schwinger model obtained by the quantum adiabatic algorithm and the
quantum variational algorithm.
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Toward dense QCD in quantum computers

1. Introduction

Lattice QCD at nonzero density is very difficult because of the sign problem. Many theoretical
methods were proposed, but it still seems difficult in classical computers. The hardness of the
sign problem depends on temperature and chemical potential. While the sign problem is mild at
high temperature and small chemical potential, the sign problem is severe at low temperature and
large chemical potential. Zero temperature is the most difficult. In this sense, the simulation at
zero temperature is the most important mission. It is also important from a phenomenological
viewpoint, i.e., neutron-star physics. I would like to propose the possibility to use quantum devices
as a solution to this problem. In particular, let’s focus on nonzero density and zero temperature.

This presentation is based on the original paper [1]. In this proceedings paper, I would like to
skip the technical details and to overview the outline. For the details, see the original paper.

2. Algorithms

In the conventional lattice QCD, the Lagrangian formalism is used. The Euclidean path integral
is nothing but the thermal partition function, so chemical potential is naturally introduced. On the
other hand, the Hamiltonian formalism is favored for quantum simulation. In the Hamiltonian
formalism, we can work with fixed particle numbers. Instead of thermal average, we consider
the ground state because the ground state is the most relevant for zero-temperature physics. Let’s
consider a certain lattice theory with fermions. The lattice Hamiltonian 𝐻 and the fermion number
operator 𝑄 can be defined. They commute with each other, [𝐻,𝑄] = 0. This means that the ground
state is labeled by the fermion number, as

𝑄 |Ψ(𝑞)⟩ = 𝑞 |Ψ(𝑞)⟩, (1)

where 𝑄 is the operator and 𝑞 is its eigenvalue. What to do in the simulation at nonzero density is to
obtain the ground state |Ψ(𝑞)⟩ for each particle number 𝑞 and then to calculate physical observables
as a function of 𝑞.

How can we obtain the ground state in quantum computers? The basic strategy is as follows.
First, we prepare the ground state |Ψ0(𝑞)⟩ of a certain Hamiltonian 𝐻0, which can be easily solved.
Then we manipulate quantum gates many times,

|Ψ(𝑞)⟩ =
∏

𝑠=1, · · · ,𝑆
𝑈 (𝑠) |Ψ0(𝑞)⟩, (2)

to give the ground state |Ψ(𝑞)⟩ of the full Hamiltonian 𝐻. If all the evolution operators 𝑈 (𝑠)
commute with the fermion number operator 𝑄, this process conserves the fermion number 𝑞. There
are two famous choices to construct the evolution operators: the quantum adiabatic algorithm and
the quantum variational algorithm. The quantum adiabatic algorithm is based on the adiabatic
theorem in quantum mechanics [3]. The operator is almost unique, and the convergence to the
exact ground state is ensured in the limit of 𝑆 → ∞. The quantum variational algorithm is a
hybrid method of classical and quantum computers [4]. The evolution operators contain several
variational parameters. The values of the parameters are tuned to minimize the total system energy.
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In the quantum variational algorithm, 𝑆 can be small. This final property is important for near-term
projects of quantum computation. The current quantum computer suffers from large quantum noise.
Figure 1 is demonstration of the quantum noise. Two kinds of data are plotted; one is obtained by a
classical computer and the other is obtained by a quantum computer. They are inconsistent due to
uncontrollable quantum noises. To suppress such artifact, the number of gate operations must be
small. For this reason, the quantum variational algorithm is favored in the current study of quantum
computation.
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Figure 1: The data obtained by a classical computer (blue) and the data obtained by a quantum computer
(red). The definitions of the vertical and horizontal axes are given in Ref. [2].

3. Benchmark tests

I did the benchmark tests of these algorithms on the so-called “simulator”, which is a classical
computer to mimic a quantum computer. I adopted the lattice Schwinger model on a small lattice
𝑁 = 8. The Hamiltonian is

𝐻 = 𝐻𝐿 + 𝐻𝜒 (3)

𝐻𝐿 =

𝑁−1∑︁
𝑛=1

𝐿2
𝑛 (4)

𝐻𝜒 = −𝑖
𝑁−1∑︁
𝑛=1

(𝜒†
𝑛𝑈𝑛𝜒𝑛+1 − 𝜒

†
𝑛+1𝑈

†
𝑛𝜒𝑛) (5)
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and the fermion number operator is

𝑄 =

𝑁∑︁
𝑛=1

[
𝜒†
𝑛𝜒𝑛 −

1
2
{1 − (−1)𝑛}

]
. (6)

The initial Hamiltonian is taken as 𝐻0 = 𝐻𝐿 . The evolution operators are set as

𝑈 (𝑠) = exp
[
−𝑖𝛿𝑡

(
𝐻𝐿 + 𝑠

𝑆
𝐻𝜒

)]
(7)

in the quantum adiabatic algorithm and

𝑈 (𝑠) = exp
[
−𝑖

(
𝛼𝐻𝐿 + 𝛽

𝑠

𝑆
𝐻𝜒

)]
(8)

in the quantum variational algorithm. Here 𝛿𝑡 is a small step size and 𝛼 and 𝛽 are the variational
parameters. Since the lattice size is small, the exact matrix diagonalization is possible. I compared
the simulation results with the exact answers.

In Fig. 2, the total system energy

𝐸 = ⟨Ψ(𝑞) |𝐻 |Ψ(𝑞)⟩ (9)

is plotted as a function of 𝑆. In both cases, the system energy is changed by the evolution operators,
and eventually becomes flat. Both of these algorithms successfully reproduce the exact value
obtained by the matrix diagonalization. The difference between them is the required value of 𝑆. In
the adiabatic method, the convergence is achieved around 𝑆 ≃ 60. In the variational method, the
convergence is much faster; we need only one or two evolution operators.
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Figure 2: The total system energy 𝐸 calculated by the quantum adiabatic algorithm (left) and the quantum
variational algorithm (right). The dotted line is the exact value obtained by the matrix diagonalization. The
fermion number is 𝑞 = 1.

Once we obtain all the ground states |Ψ(𝑞)⟩, we can calculate physical observables as a function
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of particle number 𝑞. For example, the energy density 𝐸/𝑁 and the chiral condensate

𝐶 =
1
𝑁

𝑁∑︁
𝑛=1

⟨Ψ(𝑞) | (−1)𝑛𝜒†
𝑛𝜒𝑛 |Ψ(𝑞)⟩ + 1

2
(10)

are shown in Fig. 3. The exact values are well reproduced. Figure 3 is something like the famous
plot in dense QCD. In the study of dense QCD, we usually plot the chiral condensate as a function
of chemical potential. The horizontal axis is now replaced by particle number.
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Figure 3: The energy density (red) and the chiral condensate (blue). The solid lines are obtained by the
quantum variational calculation. The dotted lines are the exact values obtained by the matrix diagonalization.

4. Summary

In this work, a computational strategy is designed for quantum lattice simulation at nonzero
density. Unfortunately, it is not applicable to the lattice QCD simulation in the current quantum
computer. The computational resource of the current quantum computer is quite limited. It is not
enough for QCD. The strategy itself is however very general. I hope that it becomes applicable to
QCD someday in the future.
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