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Self-interacting scalar quantum field theories possessing %)-symmetry are physically admissible
since their energy spectrum is real and bounded below. However, models with %)-invariant
potentials can have complex actions in general and a non-perturbative study of such systems using
methods based on traditional Monte Carlo is hindered due to numerical sign problem. In this
work we employ complex Langevin based on stochastic quantization to study two-dimensional
scalar field theories, including the ones exhibiting %)-symmetry. We also study the simplest
supersymmetric version of these systems and address the question on dynamical supersymmetry
breaking.
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1. Introduction and motivation

A systematic investigation of non-perturbative regimes of quantum field theories can be per-
formed with the help of lattice regularization. Traditional numerical methods based onMonte Carlo
can in general provide the physics of such systems when the Euclidean action is real. However, in
theories with complex actions, path integral Monte Carlo encounters the notorious sign-problem
that makes the simulation algorithms unreliable. In the literature there exists only a handful of
methods that can effectively tackle the sign-problem. We study quantum field theory models in two
dimensions with the help of one of these methods - the complex Langevin method [1, 2].

Quantum field theories such as QCD with quark chemical potential, QCD with a topological
\-term, Chern-Simons gauge theories, and chiral gauge theories can suffer from the sign-problem.
The list also includes an interesting class of non-Hermitian and self-interacting quantum field
theories that exhibit %)-invariance. Although formulated using complex actions, these theories can
possess real and bounded below energy spectra. In Refs. [3, 4] Bender andMilton considered a new
class of %)-invariant (Euclidean) quantum field theories with interactions of the form _(8q) (2+X) .
These theories are physically admissible, that is, they possess a real and bounded below energy
spectra. But for these interactions parity in itself is manifestly broken. Our goal is to perform a
non-perturbative analysis of these theories with the help of complex Langevin method.

Incorporation of supersymmetry (SUSY) into our understanding of particle physics has drawn
considerable interest among physicists ever since it was first proposed. Our experiences show that
SUSY can only be a fundamental symmetry of nature if it is manifested as a spontaneously broken
symmetry at low energy scales [5, 6]. This leads to the requirement that in order to study SUSY
breaking mechanisms we need non-perturbative tools. Over the past few decades, a lot of effort has
been put into formulating lattice regularized supersymmetric models, and thus providing access to
various intriguing non-perturbative phenomena such as dynamical SUSY breaking.

In this proceedings we present our preliminary investigations, with the help of complex
Langevin method, on the study of lattice regularized version of a minimal supersymmetric model,
namely N = 1 Wess-Zumino model in two-dimensions. We discuss the case when the superpo-
tential is a double-well potential. We also discuss our ongoing simulations of the %)-symmetric
superpotentials. Before moving on to supersymmetric models in Sec. 3, as a warm up, in Sec. 2
we discuss two-dimensional scalar field theories with q4 and %)-symmetric potentials.

2. Two-dimensional scalar field theories

Consider the Lagrangian of a two-dimensional Euclidean scalar field theory

L� =
1
2
m`qm`q +

1
2
<2q2 +, (q), (1)

where q is a dimensionless scalar, < is the mass parameter, and, (q) is the interaction potential.
The Euclidean action is (� =

∫
32G L� .

To simulate the model using the complex Langevin method we first discretize the model on
a two-dimensional toroidal lattice. The temporal and spatial extents, VC and VG , respectively, can
be expressed as VC = VG = !0 with ! denoting the number of lattice sites in each direction and 0
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Figure 1: Model with q4 potential. Expectation values of the order parameter Φ (left panel), energy �
(center panel), and susceptibility j (right panel) against ^ for different lattice extents and fixed _̃ = 0.5.

denoting the lattice spacing. We have
∫
32G −→ 02 ∑

G . The periodicity of the lattice enables us to
write (

m`q
)2
= −qm2

`q = −
1
02

[
qGqG+` + qGqG−` − 2qG2] , (2)

where qG±` represents the field at the neighboring site in ±`-th direction.
Using the complex Langevin method we can study these models for various interaction poten-

tials including the %)-invariant potentials. Complex Langevin update for field configurations at a
lattice site G, for Langevin time \, with step-size n is given by

qG, \+n = qG, \ + nEG, \ + [G, \
√
n, (3)

where the drift term is obtained as EG, \ = −m(�/mqG, \ and [G, \ is a real Gaussian noise.

2.1 Model with q4 potential

Consider the potential , (q) = _q4. Classically, the model is invariant under the discrete
Z2 symmetry, that is, q → −q. However, in quantum theory, this symmetry may be broken
dynamically. The expectation value of the scalar field, 〈q〉 can be regarded as an order parameter.
If 〈q〉 = 0 the theory is in a symmetric phase, otherwise it is in a symmetry broken phase. There
exist comprehensive studies of the q4 theory on the lattice [7–10]. We will utilize this model as a
testbed for our Langevin analysis. We employ a lattice parameterization with dimensionless lattice
parameters <2

0 = <
202 and _0 = _0

2, and in addition, we introduce a new set of parameters ^ and
_̃ [7],

<2
0 →

1 − 2_̃
^
− 4, _0 → 6

_̃

^2 , and q→
√

2^Φ. (4)

The above parameterization leads to the lattice action

( = −2^
∑
G

∑̀
ΦGΦG+` +

∑
G

Φ2
G + _̃

∑
G

(
Φ2
G − 1

)2
. (5)

In our simulations of the model we monitor the following observables as ^ is varied: the
average of the field Φ as an order parameter, energy � , and susceptibility j. The simulation results
are shown in Fig. 1 for different lattice extents and fixed _̃ = 0.5. The results indicate that the model
possess a phase transition around ^ = 0.6 and 〈Φavg〉 ≠ 0 for ^ ≥ 0.6 implying Z2 broken phase.
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2.2 Model with %)-invariant potential

Next we move onto %)-invariant scalar field theory with the potential , (q) = −_(8q) (2+X) ,
where the coupling _ has <2 dimension and X is a real parameter. It is fascinating to note that these
models possess a real and bounded below spectra for X > 0 with a non-zero mass parameter. The
positivity of the spectrum can be understood from a theoretical point of view.

As an example, we consider the theory for X = 1. The Lagrangian is

L� =
1
2

(
m`q

)2 + 1
2
<2q2 + 8_q3. (6)

For a conventional real _q3 theory, in the weak-coupling expansion, the Green’s functions can be
expressed as a formal power series in _2. This power series, although real, does not alternate in sign,
and hence, is not Borel summable. The non-summability of perturbation series reflects the fact
that the spectrum is not bounded below. Upon replacing the coupling _→ 8_, the theory becomes
%)-symmetric. The power series remains real and also it alternates sign. As a consequence the
perturbation series becomes summable suggesting that the underlying theory possesses real positive
spectrum [3, 4, 11].

The action for such %)-symmetric theories is complex in general. Path integral Monte Carlo
requires the action to be real and hence a non-perturbative lattice study of these theories is hindered
due to a sign problem or complex phase problem. We use complex Langevin method to overcome
this difficulty. For the X = 1 model, the lattice action can be expressed as

( = −
∑
G

∑̀
qGqG+` +

(
2 +

<2
0

2

) ∑
G

q2
G + 8_0

∑
G

q3
G , (7)

where <0 and _0 are dimensionless mass and coupling parameters, respectively.
In Fig. 2 we show our simulation results for the bosonic %)-symmetric theory with X = 1 (top)

and X = 2 (bottom) potential. On the left panel, the expectation values of the real and imaginary
parts of the average field q (order parameter) against physical mass <2 for different lattice extents
and fixed physical coupling _ = 10.0 is shown. On the right panel we show the ground state energy
� against <2 for different lattice extents and fixed physical coupling _ = 10.0. These preliminary
results suggest 〈qavg〉 ≠ 0, that is, parity is manifestly broken for X = 1, 2. The expectation value of
energy is real and positive, Re [〈Eavg〉] > 0 and Im [〈Eavg〉] = 0, indicating a real bounded below
spectra for this class of interactions. Our simulation results are in accordance with the analytical
predictions [4].

3. Two-dimensional N = 1 Wess-Zumino model

In this sectionwe study a supersymmetric version of themodel discussed in the previous section.
(The zero- and one-dimensional cousins of this model were studied recently in Refs. [12, 13].)
We add fermions to the Lagrangian and consider the simplest two-dimensional supersymmetric
quantum field theory, the N = 1 Wess-Zumino model. The theory involves a minimalistic set of
fields, that is, a scalar field q and a two-component Majorana spinor k. The on-shell model in
Euclidean space-time has the action

(� =

∫
32G

1
2

[ (
m`q

)2 + k̄Mk +,2 (q)
]
, (8)
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Figure 2: Bosonic %)-symmetric model with X = 1 (top) and X = 2 (bottom) potential. The expectation
values of the real and imaginary parts of the order parameter q (left panel) and the energy � (right panel)
against physical mass parameter <2 for different lattice extents and fixed physical coupling _ = 10.0.

whereM = W`m` +, ′ (q) is referred to as the fermion matrix and the potential, (q) is actually
the derivative of the superpotential. The action is invariant under a single supersymmetry given by
the transformations

Xq = n̄k, Xk =
[
W`m`q −, (q)

]
n, Xk̄ = 0. (9)

The Majorana spinor satisfies the relation, k̄ = k) C, where C is the ‘charge conjugation’ operator
in Euclidean space. It is given as

� =

(
0 −1
1 0

)
. (10)

It is crucial to note that this theory does not have a Q-exact formulation or a Nicolai map. The
model is not obtained by dimensional reduction unlike itsN = 2 supersymmetric version. Another
interesting property is that for periodic boundary conditions for fermions, dynamical breaking of
SUSY is possible, that is, the vanishing of the Witten index, Δ = 0 can happen.

For a non-perturbative analysis of themodel, we place the theory on a symmetric toroidal lattice
discussed in the previous section. We consider a particular lattice formulation of the model intro-
duced by Golterman and Petcher [14]. After integrating out the fermions, the lattice representation
of the Euclidean continuum action has the following bosonic and fermionic components

( = (1 + ( 5 , (1 =
1
2

(
−qA�2

AA ′qA ′ +,2
A

)
, ( 5 = ln [PfM] = −1

2
tr [lnM] , (11)
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where A, A ′ are the lattice vectors, fermion matrixM ≡ MUV

AA ′ = W
`

UV
D`

AA ′ + XUV, ′AA ′, PfM is the
Pfaffian of the fermion matrix. We use symmetric difference operators defined as follows

D`

AA ′ =
1
2

[
XA+4` ,A ′ − XA−4` ,A ′

]
(12)

�=AA ′ =
1
2

∑̀ [
XA+=4` ,A ′ + XA−=4` ,A ′ − 2XAA ′

]
. (13)

Since the action Eq. (11) can be complex in general, we apply the complex Langevin method to
study the theory for various superpotentials. We use the Euler discretized Langevin equation for
the B-th lattice vector at Langevin time \. The drift term is defined as

EB, \ = −
m(

mqB, \
= �2

BA ′qA ′, \ −,A ′, ′A ′B +
(
mM
mqB

)UV
AA ′

(
M−1

)VU
A ′A
. (14)

In order to test the reliability of complex Langevin simulations we check the correctness criteria
[17] based on the decay of the distribution %(D) of the absolute value D of the drift term. We have

at a particular Langevin time \, the drift-term magnitude D\ =
√(

1/!2) ∑
B

��EB, \ ��2. We can trust
the simulations if the distribution %(D) of D falls off exponentially or faster.

3.1 Double-well superpotential

We begin with considering a quadratic interaction potential or a double-well superpotential
[9, 15, 16] of the form

, (q) = _q2 − <
2

4_
, _ ≠ 0. (15)

The theory has two classical vacua at q = ±</2_. In the lattice theory, we consider dimensionless
couplings _0 and <0, related to their continuum counter parts through _0 = _0 and <0 = <0. The
potential and its derivative take the following form

,A = _0q
2
A −

<2
0

4_0
− 1

2
�1
AA ′qA , ,

′
AA ′ ≡

m%A

mqA ′
= 2_0qAXAA ′ − �1

AA ′, (16)

where �1
AA ′ is the Wilson mass operator, which vanishes in the continuum limit but eliminates

fermion doubling problem at a finite lattice spacing. Due to the introduction of the Wilson term,
the lattice action is no longer invariant under parity, implying that the two vacuum states are not
equivalent. It is expected that field configurations would reside in the vicinity of one of the classical
vacua. In the large values of <0

2/_0 the /2 symmetry is spontaneously broken (in infinite volume)
and q settles down to a definite ground state.

In Fig. 3 we show our simulation results. On the top panel, we have the scalar field q (order
parameter) against the Langevin time \ for various <2

0 values, depicting the different phases of the
theory. We have fixed the lattice extent to ! = 4, and lattice coupling to _0 = 0.125. For <2

0 = +1,
the field configurations (blue squares) are confined, along with small fluctuations, to one of the
classical vacua, q = <0/2_0, implying that the theory is in an Z2 broken phase. At <2

0 = +0.16, we
observe the tunneling behavior, the field configurations (green triangles) undergo large fluctuations
and they oscillate in between the two classical vacua at q = ±<0/2_0. The change in the sign of the

6
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Pfaffian (black diamonds) clearly illustrates this behavior. For<2
0 = −1, the field configurations (red

circles) suffer from small fluctuations around a single vacuum state, respecting the Z2 symmetry.
On the bottom left panel, we have the real part of the field 〈q〉 (order parameter), the sign of

the Pfaffian 〈sign PfM〉, and the simplest Ward identity 〈W〉 against the lattice mass <2
0 for a fixed

lattice coupling _0 = 0.125. In the infinite-volume continuum theory, for large values of <2/_, the
scalar field chooses a single unique ground state indicating a broken Z2 symmetry and unbroken
SUSY in the model. We see that for mass larger than some critical value, <2

0 ≥ <
2
0,2 , the scalar

field (blue squares) selects the ground state +<0/2_0 and the sign of the Pfaffian (black diamonds)
approaches +1. As <2

0 is decreased, tunneling effects to the other vacuum state are observed, and
the expectation value of the scalar field (green squares) vanishes 〈q〉 ∼ 0. This effect is a direct
consequence of the Pfaffian flipping sign, reflected in 〈sign PfM〉 ∼ 0. These results hint towards
the restoration of Z2 symmetry and dynamical SUSY breaking. The above argument is supported
by the Ward identity (yellow circles). As <2

0 is decreased, we observe that the Ward identity no
longer vanishes, that is, 〈W〉 ≠ 0 indicating a transition from unbroken to broken SUSY phase.
For <2

0 < 0, we notice a Z2 symmetric phase with scalar field (red squares) 〈q〉 ∼ 0, and broken
SUSY with 〈W〉 ≠ 0. We show the decay of the absolute drift on the bottom right panel for our
simulations. We observe exponential or faster decay for <2

0 > 0.42 (illustrated by filled data points
in the bottom left panel) and a power-law behavior for <2

0 ≤ 0.42 (illustrated by unfilled data points
in the bottom left panel). This could be pertaining to the singular drift problem, and we are looking
further into it.

3.2 Model with %)-symmetric potential

Our main goal is to cross-check the results obtained by Bender and Milton in Ref. [3].
There they have looked at a two-dimensional supersymmetric model with four supercharges with
the superpotential , (q) = −8_(8q) (1+X) . Parity symmetry is broken in this supersymmetric
model. The authors tried to answer the question on whether breaking of parity induces breaking
of supersymmetry with the help of a perturbative expansion in parameter X. They found, through
second order in X, that supersymmetry remained unbroken in the model, and suggested that SUSY
could remain intact to all orders in powers of X. We plan to verify these results with the help
of complex Langevin simulations of the model. We soon hope to report the results of ongoing
simulations elsewhere [18].

4. Conclusions

In this work we have presented the preliminary results of our investigations on the two-
dimensional scalar field theories with various interactions including the interesting cases of %)-
invariant potentials. We laid out the lattice construction of the models and then studied the bosonic
versions with q4 and %)-symmetric potentials. After that we looked at a model with minimal
supersymmetry, the two-dimensional N = 1 Wess-Zumino model. Our simulations for the model
with double-well superpotential suggests that SUSY is preserved in this model when the mass
parameter <2

0 is greater than some critical value.
Acknowledgements: We thank discussionswith TakehiroAzuma andNavdeep SinghDhindsa.

The work of AJ was supported in part by the Start-up Research Grant (No. SRG/2019/002035)
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Figure 3: N = 1 Wess-Zumino model with a double-well superpotential. (Top) Langevin time histories of
q for various lattice mass <2

0. The sign of the Pfaffian is also plotted for <2
0 = 0.16. (Bottom-Left) Field 〈q〉,

the sign of the Pfaffian 〈sign [PfM]〉, and the Ward identity 〈W〉 against lattice mass <2
0. (Bottom-Right)

Decay of the absolute drift for various lattice mass <2
0. The plots are for a fixed lattice extent ! = 4, and

lattice coupling _0 = 0.125.
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