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We report our progress in data analysis on two-point correlation functions of the 𝐵 meson using
sequential Bayesian method. The data set of measurement is obtained using the Oktay-Kronfeld
(OK) action for the bottom quarks (valence quarks) and the HISQ action for the light quarks on the
MILC HISQ lattices. We find that the old initial guess for the 𝜒2 minimizer in the fitting code is
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iterations dramatically.
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1. Introduction

To determine Cabibbo-Kobayashi-Maskawa (CKM) matrix element |𝑉𝑐𝑏 |, we need to calculate
the semileptonic form factors for the �̄� → 𝐷∗ℓā and �̄� → 𝐷ℓā decays on the lattice. In order
to obtain the semileptonic form factors, we need to do the data analysis on the three-point (3pt)
correlation functions, which require results for the masses and normalization constants obtained
from the two-point (2pt) correlation functions. Here, we present recent progress in our data analysis
on the 2pt correlation functions to determine the masses and normalization constants for the ground
and excited states.

We adopt the Fermilab formulation [1] to implement the heavy quarks such as bottom and
charm quarks on the lattice. The Fermilab action [1] is improved up to the _1 level (_ ≃ Λ/(2𝑚𝑄)),
and so it is impossible to achieve a sub-percent precision with it by construction. In order to
overcome this difficulty, we use the Oktay-Kronfeld (OK) action [2] improved up to the _3 level.
Recently, we have completed the current improvement up to the same level as the OK action [3].

The OK action for a heavy quark is

𝑆OK = 𝑆0 + 𝑆1 + 𝑆2 + 𝑆3 (1)

where 𝑆𝑛 represents those O(_𝑛) terms of 𝑆OK collectively.

𝑆0 = 𝑎4
∑︁
𝑥

�̄�(𝑥) [𝑚0 + 𝛾4𝐷4] 𝜓(𝑥) ,

𝑆1 = 𝑎4
∑︁
𝑥

�̄�(𝑥)
[
−1

2
𝑎Δ4 + Z𝜸 · 𝑫 − 1

2
𝑟𝑠Z𝑎Δ

(3) − 1
2
𝑐𝐵𝑎Z𝑖𝚺 · 𝑩

]
𝜓(𝑥) ,

𝑆2 = 𝑎4
∑︁
𝑥

�̄�(𝑥)
[
−1

2
𝑐𝐸𝑎Z𝜶 · 𝑬

]
𝜓(𝑥) ,

𝑆3 = 𝑎4
∑︁
𝑥

�̄�(𝑥)
[
𝑐1𝑎

2
∑︁
𝑘

𝛾𝑘𝐷𝑘Δ𝑘 + 𝑐2𝑎
2{𝜸 · 𝑫,Δ(3) } + 𝑐3𝑎

2{𝜸 · 𝑫 , 𝑖𝚺 · 𝑩}

+𝑐𝐸𝐸𝑎
2{𝛾4𝐷4 ,𝜶 · 𝑬} + 𝑐4𝑎

3
∑︁
𝑘

Δ2
𝑘 + 𝑐5𝑎

3
∑︁
𝑘

∑︁
𝑗≠𝑘

{𝑖Σ𝑘𝐵𝑘 ,Δ 𝑗}
 𝜓(𝑥) . (2)

Here, we use the same notation as in Ref. [2]. The bare quark mass 𝑚0 is

𝑎𝑚0 =
1
2

(
1
^
− 1
^crit

)
, (3)

where ^ (^crit) is a (critical) hopping parameter [4]. Numerical values for ^ and ^crit are summarized
in Table 1. We use the HISQ action [5] for strange quarks.

In order to get a better signal for the 𝐵𝑠 meson states, we apply a covariant Gaussian smearing
(CGS),

{
1 + 𝜎2∇2/(4𝑁GS)

}𝑁GS to the point source and sink as in Ref. [6]. The CGS parameters are
summarized in Table 1. We apply the CGS only to the heavy quark fields and not to the light quark
fields. We use the MILC HISQ ensembles with 𝑁 𝑓 = 2 + 1 + 1 [7]. The details are summarized in
Table 2.
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𝑚𝑥/𝑚𝑠 ^crit ^𝑏 {𝜎 , 𝑁GS} 𝑁cfg × 𝑁src

1 0.051218 0.04070 {1.5 , 5} 1000 × 3

Table 1: Hopping parameters and smearing parameters. Here, 𝑚𝑥 is a mass of valence light quarks. 𝑁cfg
represents the number of gauge configurations and 𝑁src is the number of sources per gauge configuration.

𝑎 (fm) 𝑁3
𝑠 × 𝑁𝑡 𝑀𝜋 (MeV) 𝑎𝑚𝑙 𝑎𝑚𝑠 𝑎𝑚𝑐

0.1184(10) 323 × 64 216.9(2) 0.00507 0.0507 0.628

Table 2: Details on the MILC HISQ ensembles with 𝑁 𝑓 = 2 + 1 + 1 [7].

2. Sequential Bayesian Method

Let us consider 2pt correlation functions [8]:

𝐶 (𝑡) =
4∑︁

𝛼=1

∑︁
x
⟨O†

𝛼 (𝑡, x)O𝛼 (0)⟩ (4)

Here, the interpolating operator for the heavy-light meson is

O𝛼 (𝑡, x) =
[
�̄�𝑏 (𝑡, x)𝛾5Ω(𝑡, x)

]
𝛼
𝜒ℓ (𝑡, x) . (5)

Here 𝜓𝑏 is an OK action field for bottom quarks, and 𝜒ℓ is an HISQ action field for light quarks.

Ω(𝑡, x) ≡ 𝛾
𝑥1

1 𝛾
𝑥2

2 𝛾
𝑥3

3 𝛾 𝑡
4 . (6)

The subscript 𝛼 represents taste degrees of freedom for staggered light quarks.
We construct the fitting function to contain 𝑚 even time-parity states and 𝑛 odd time-parity

states, which we call “𝑚 + 𝑛 fit”. The 𝑚 + 𝑛 fit function is

𝑓 (𝑡) = 𝑔(𝑡) + 𝑔(𝑇 − 𝑡) ,

𝑔(𝑡) = 𝐴0 𝑒
−𝐸0 𝑡

[
1 + 𝑅2 𝑒

−Δ𝐸2 𝑡
(
1 + 𝑅4 𝑒

−Δ𝐸4 𝑡
(
· · ·

(
1 + 𝑅2𝑚−2 𝑒

−Δ𝐸2𝑚−2 𝑡
)
· · ·

))
−(−1)𝑡 𝑅1 𝑒

−Δ𝐸1 𝑡
(
1 + 𝑅3 𝑒

−Δ𝐸3 𝑡
(
· · ·

(
1 + 𝑅2𝑛−1 𝑒

−Δ𝐸2𝑛−1 𝑡
)
· · ·

))]
(7)

where Δ𝐸𝑖 ≡ 𝐸𝑖 − 𝐸𝑖−2, 𝐸−1 ≡ 𝐸0 , 𝑅𝑖 ≡ 𝐴𝑖/𝐴𝑖−2 and 𝐴−1 ≡ 𝐴0.
We adopt the sequential Bayesian method for fitting. We take the following steps to analyze

the 2-point correlation functions.

Step 1 Do the 1st fitting. ex) 1+0 fit (2 parameters: {𝐴0, 𝐸0})

Step 2 Feed the fitting results as prior information for the 2nd fitting.
ex) 1+1 fit (4 parameters: {𝐴0, 𝐸0, 𝑅1, Δ𝐸1}, 2 prior information on {𝐴0, 𝐸0})

Step 3 Do stability test and find optimal prior information. ex) stability test gives optimal prior
information on {𝐴0, 𝐸0}.
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Step 4 Save the 2nd fitting results (e.g. 1+1 fit) into the 1st fitting.

Step 5 Choose the next fitting (e.g. 2+1 fit) as the 2nd fitting.

Step 6 Go back to Step 2. ex) 1+0 → 1+1 → 2+1 → 2+2 → · · · .

3. Numerical precision problem on covariance matrix inversion

When we fit the data to the fitting function given in Eq. (7), we encounter a numerical precision
problem in the covariance matrix inversion. For example, we set the fitting range to 15 ≤ 𝑡 ≤ 29
and then we have a covariance matrix 𝑉 of 15× 15. We use the Cholesky decomposition algorithm
to obtain the inverse matrix 𝑉−1. In order to check the matrix inversion, we monitor the following
identity: 𝑉 ·𝑉−1 = 1. If everything works well, we will get the off-diagonal components of 𝑉 ·𝑉−1

to be zero within numerical precision, but we find that some of them are O(10−5). We also find
that the largest and smallest eigenvalues for 𝑉 are O(10−35) and O(10−60), respectively. Since
𝑉−1 is used multiple times in the least 𝜒2 fitting, we need 𝑉−1 accurate up to double precision, but
the existing fitting code cannot achieve the numerical precision. Hence, we find two independent
methods to resolve the puzzle: one is the rescaling method and the other the correlation matrix
method.

3.1 Rescaling method

We transform the data 𝐶 (𝑡), the fit function 𝑓 (𝑡) and the covariance matrix 𝑉 (𝑡𝑖 , 𝑡 𝑗) by an
arbitrary rescaling factor 𝑅(𝑡) as follows,

�̃� (𝑡) = 𝐶 (𝑡)
𝑅(𝑡) , 𝑓 (𝑡) = 𝑓 (𝑡)

𝑅(𝑡) , �̃� (𝑡𝑖 , 𝑡 𝑗) =
𝑉 (𝑡𝑖 , 𝑡 𝑗)

𝑅(𝑡𝑖) 𝑅(𝑡 𝑗)
. (8)

Then the fitting results and the 𝜒2 value are invariant under the rescaling transformation of Eqs. (8),
regardless of details on 𝑅(𝑡). Here, note that the fitting parameters never be changed by the rescaling
factor 𝑅(𝑡).

In our data analysis, we set the rescaling function to

𝑅(𝑡) = 𝐴𝑟
0 exp[−𝐸𝑟

0 𝑡] + 𝐴𝑟
0 exp[−𝐸𝑟

0 (𝑇 − 𝑡)] . (9)

Here, 𝐴𝑟
0 and 𝐸𝑟

0 is determined by fitting the data in the fit range (23 ≤ 𝑡 ≤ 29), where the
superscript 𝑟 represents the rescaling function. The huge scale difference between the largest and
the smallest eigenvalues of 𝑉 comes from the large mass (𝐸0 ≃ 2.0/𝑎) of the 𝐵𝑠 meson, since the
2pt correlation function decreases as a function of ∼ exp(−𝐸0𝑡) at the leading order. Hence, if we
remove this leading order exponential decay term by the rescaling function 𝑅(𝑡) in Eq. (9), then the
remaining scale difference in the largest and the smallest eigenvalues of �̃� reduces to the O(10−2)
level, which allows us to use the Cholesky algorithm reliably for the matrix inversion. We find that
the off-diagonal components of �̃� · �̃�−1 are zero within the numerical precision. Therefore, the
rescaling method resolves our numerical precision problem.
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3.2 Correlation matrix method

For a given covariance matrix 𝑉 (𝑡𝑖 , 𝑡 𝑗), we define the correlation matrix as

𝜌(𝑡𝑖 , 𝑡 𝑗) ≡
𝑉 (𝑡𝑖 , 𝑡 𝑗)

𝜎(𝑡𝑖)𝜎(𝑡 𝑗)
where 𝜎(𝑡𝑖) =

√︁
𝑉 (𝑡𝑖 , 𝑡𝑖) , (10)

Then we can obtain the inverse covariance matrix 𝑉−1 using the following simple identity:

𝑉−1(𝑡𝑖 , 𝑡 𝑗) =
𝜌−1(𝑡𝑖 , 𝑡 𝑗)
𝜎(𝑡𝑖) 𝜎(𝑡 𝑗)

. (11)

Here, note that the correlation matrix 𝜌(𝑡𝑖 , 𝑡 𝑗) is O(1), while 𝜎(𝑡) decays exponentially like the
rescaling function 𝑅(𝑡) in the previous subsection. The remaining scale difference in the largest
and smallest eigenvalues of 𝜌 reduces to the 10−2 level. Hence, the correlation matrix method also
resolves our numerical precision problem.

3.3 Comparison of the rescaling and correlation matrix methods

In Table 3, we present the fitting results obtained using the rescaling method and the correlation
matrix method. We find that both provides the same results. The difference in computing time is
negligible (only ≃ 0.7%). We conclude that both methods are good for our fitting purpose. Hence,
we use both methods here to crosscheck the fitting results by comparison.

parameter rescaling correlation

𝐴0 0.01724(52) 0.01724(52)
𝐸0 2.0448(22) 2.0448(22)
𝑅1 3.5(58) 3.5(58)
Δ𝐸1 0.36(12) 0.36(12)

𝜒2/d.o.f. 0.2306(80) 0.2306(80)
computing time [sec] 73.3 72.8

Table 3: Comparison of the rescaling method and the correlation method for the 1+1 fit with the fit range of
13 ≤ 𝑡 ≤ 29.

4. Application of the Newton method to the initial guess for the 𝜒2 minimizer

When we do the least 𝜒2 fitting, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [9–12] for the 𝜒2 minimizer. The BFGS algorithm is one of the quasi-Newton methods for
minimization. The BFGS algorithm needs an initial guess for the fitting parameters by construction.
The old version of our fitting code sets up the initial guess as follows. First, solve Eq. (12) to obtain
an initial guess for 𝐴0 and 𝐸0.

©«
∑︁
𝑖

𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

∑︁
𝑖

𝑡𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)∑︁

𝑖

𝑡𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

∑︁
𝑖

𝑡2𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

ª®®®®¬
(
ln 𝐴

𝑔

0
−𝐸𝑔

0

)
=

©«
∑︁
𝑖

𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

ln |𝐶 (𝑡𝑖) |∑︁
𝑖

𝑡𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

ln |𝐶 (𝑡𝑖) |

ª®®®®¬
(12)
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where the superscipt 𝑔 in 𝐴
𝑔

0 and 𝐸
𝑔

0 represents the initial guess. Second, in order to obtain an
initial guess for 𝑅𝑖 and Δ𝐸𝑖 , the old fitting code adopts the following convention:

𝑅
𝑔

2 𝑗 = 2.5 𝑗 , 𝑅
𝑔

2 𝑗−1 = 0.025 𝑗 , (13)

Δ𝐸
𝑔

2 𝑗 = Δ𝐸
𝑔

2 𝑗−1 = 0.1𝐸𝑔

0 , (14)

where 𝑗 ≥ 1 and 𝑗 ∈ 𝑍 .
For example, in the 3+2 fit, the old fitting code sets up the initial guess to 𝑅

𝑔

4 = 5.0, Δ𝐸𝑔

4 =

0.1 𝐸
𝑔

0 . However, we find that 𝑅𝑖 ≲ 1 typically in our fitting. Since the initial guess values for 𝑅𝑖

is very far away from the fitting results for 𝑅𝑖 , the 𝜒2 minimizer (a quasi-Newton method) works
too hard to get a realistic value for 𝑅𝑖 , which is not necessary, if one can feed a better initial guess
for 𝑅𝑖 to the 𝜒2 minimizer. In the end of the day, we find that a poor determination of the initial
guess causes the number of iterations for the 𝜒2 minimizer to increase significantly.

In order to obtain a better initial guess, we use the multi-dimensional Newton method [13, 14].
The Newton method determines the initial guess directly from the data. Technical details on the
Newton method are described in Subsections 4.1, 4.2, and 4.3. In the Table 4, we present the number
of iterations for the 𝜒2 minimizer when we use the old initial guess and the new initial guess with
the Newton method. Here, we find that the overhead from the Newton method is negligibly small
(about 0.5% of the running time for a single sample).

fit type old initial guess Newton method

1 + 1 1641 824

2 + 1 1627 327

2 + 2 1673 704

Table 4: Number of iterations of the 𝜒2 minimizer for a single sample.

4.1 The Newton method

When we do the 𝑚 + 𝑛 fit, then we have to determine 𝑁 = 2(𝑚 + 𝑛) fit parameters. Hence,
we need to choose 𝑁 time slices such as {𝑡1, 𝑡2, . . . , 𝑡𝑁 } in order to apply the multi-dimensional
Newton method to find roots for Eqs. (16).

X(𝑡𝑖) ≡
𝑓 (𝑡𝑖) − 𝐶 (𝑡𝑖)

𝐶 (𝑡𝑖)
(15)

X(𝑡𝑖) = 0 (16)

To measure the convergence of the Newton method, we introduce D𝑁 , the norm of relative difference:

D𝑁 =

√√√
𝑁∑︁
𝑖=1

[X(𝑡𝑖)]2 , (17)

To resolve the precision problem in Jacobian matrix inversion, we use 𝐶 (𝑡𝑖)’s as rescaling
factor in Eq. (15). By rescaling, the Newton method converges faster, while the Jacobian matrix

6
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inversion gets stabilized. The stopping condition for the Newton method is

max
𝑖=1,...,𝑁

|X(𝑡𝑖) | < 10−12 . (18)

4.2 Initial guess for the Newton method in the 1+0 fit

We also need an initial guess for the Newton method. First, we choose two time slices 𝑡1 and
𝑡2 = 𝑡1 + 2. Second, we set the initial guess as follows,

𝐸
𝑔𝑛

0 =
1
2

ln
𝐶 (𝑡1)
𝐶 (𝑡2)

(19)

𝐴
𝑔𝑛

0 =
𝐶 (𝑡1)

exp[−𝐸𝑔𝑛

0 𝑡1] + exp[−𝐸𝑔𝑛

0 (𝑇 − 𝑡1)]
. (20)

Here, the superscript 𝑔𝑛 indicates the initial guess for the Newton method. For example, when we
set 𝑡1 = 21, we find that D2 = 7.54 × 10−3 for the initial guess, which is good enough to apply the
Newton method to find the exact roots.

4.3 Initial guess for the Newton method for the 1 + 1 fit with the scanning method

When we move from one fit to the next fit (e.g. 1+0 fit → 1+1 fit), we introduce two or four
new fit parameters (e.g. 𝑅1 and Δ𝐸1 for the 1+1 fit) on top of the previous fit parameters (e.g. 𝐴0
and 𝐸0 for the 1+0 fit), while we extend the fitting range toward the source time slice. Here, let us
choose the [1+0 → 1+1] fit as an example to explain how to set the initial guess for the Newton
method. Since we know the fit results for the 1+0 fit, we may recycle them to set up the initial
guess for 𝐴0 and 𝐸0. In order to find an initial guess for the new parameters 𝑅1 and Δ𝐸1, we use
the scanning method as shown in Fig. 1. First, we find a proper range for 𝑅1 and Δ𝐸1 such as
𝑅1 ∈ [0.0, 3.0] and Δ𝐸1 ∈ [0.0, 1.0] and choose two time slices within the fit range. Second, we
introduce a 6 × 6 lattice to cover the full range as in Fig. 1. Third, we find the minimum of D2 on
the lattice. Fourth, we find the new range which contains the nearest neighbor lattice points of the
minimum as in Fig. 1. Fifth, we repeat the above scanning method until we find 𝑅

𝑔𝑛

1 and Δ𝐸
𝑔𝑛

1
which satisfy the stopping condition D2 < 1.0 × 10−2.

𝑟1 𝑟2

𝑒1

𝑒2

𝑅𝑖

Δ𝐸𝑖

𝑅𝑖

Δ𝐸𝑖

𝑟1 𝑟2
𝑒1

𝑒2

Figure 1: Schematic picture of iterative scanning
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fit type 1 + 0 1 + 1 2 + 1 2 + 2 (1st) 2 + 2 (2nd)

info type Prior Result Prior Result Prior Result Prior Result Prior Result

𝐴0 none 0.0182(29) 0.018(14) 0.01724(52) 0.017(10) 0.01660(86) 0.017(10) 0.01724(35) 0.017(10) 0.01727(35)
𝐸0 none 2.0468(76) 2.05(11) 2.0448(22) 2.045(23) 2.0428(31) 2.043(23) 2.0449(18) 2.045(23) 2.0450(18)
𝑅1 none 3.5(58) 3.5(35) 0.755(82) 0.76(76) 0.646(84) 0.65(34) 0.639(79)
Δ𝐸1 none 0.36(12) 0.36(36) 0.255(12) 0.26(26) 0.242(14) 0.24(11) 0.241(13)
𝑅2 none 0.93(37) 0.93(93) 1.879(76) 1.9(19) 1.888(75)
Δ𝐸2 none 0.33(10) 0.33(33) 0.475(21) 0.48(48) 0.477(21)
𝑅3 none 2.10(49) none 2.05(43)
Δ𝐸3 none 0.58(15) none 0.57(14)

fit range 21 ≤ 𝑡 ≤ 29 13 ≤ 𝑡 ≤ 29 7 ≤ 𝑡 ≤ 29 3 ≤ 𝑡 ≤ 29 3 ≤ 𝑡 ≤ 29

Table 5: Preliminary results from the sequential Bayesian fitting.

5. Results

As explained in Subsection 4.2, we determine the initial guess for the 1+0 fit using the Newton
method. The fitting results for the 1+0 fit are summarized in the first column of Table 5. In Fig. 2,
we present results for the effective masses 𝑚 (1)

eff and 𝑚
(2)
eff , where

𝑚
( 𝑗 )
eff (𝑡) = 1

𝑗
ln

(
𝐶 (𝑡)

𝐶 (𝑡 + 𝑗)

)
. (21)

We set the fit range for the 1+0 fit to the region where the effective mass signal does not oscillate
with respect to time. It corresponds to the magenta color in Fig. 2. We set up the Bayesian prior
information (info) for 1+1 as follows.

𝐴
p
0 = 𝐴

[1+0]
0 ± [0.8 × 𝐴

[1+0]
0 ] (22)

𝐸
p
0 = 𝐸

[1+0]
0 ± [14.53 × 𝜎

[1+0]
𝐸0

] (23)

where the superscript p represent the prior info. Here, we take the maximum fluctuation of the
effective masses within the 1+0 fit range as the prior width for 𝐸0, which corresponds to the blue
dashed line in Fig. 2.

2

2.2

0 5 10 15 20 25 30

m
eff

(t
)

t

m
(1)

eff

m
(2)

eff

Figure 2: Effective masses for the 1+0 fit.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
3
6

The Newton method Benjamin J. Choi

We set the fit range for the 1+1 fit to 13 ≤ 𝑡 ≤ 29 so that it minimize the 𝜒2/d.o.f with a given
prior info. We also apply the same principle of the minimum 𝜒2/d.o.f to find the optimal fit ranges
for the 2+1 and 2+2 fits. In the 2+1 fit, we perform the stability test on 𝐴0 and 𝐸0 to find the optimal
prior widths such that we find the minimum value which does not change the fit results for 𝐴0 and
𝐸0. In the 2+2 fit, we perform the same stability test on 𝑅1 and Δ𝐸1 to find the optimal prior widths.
In the first 2+2 fit, the fit results for 𝑅2 and Δ𝐸2 shift from the prior info by about 1𝜎. Hence, we
update the prior info for the second 2+2 fit to reflect on this shift.

At present we are working on the 3+2 and 2+3 fits to consume the entire time slices for the fit
range 1 ≤ 𝑡 ≤ 29.

6. Conclusion

We have multiple options to choose time slices when we apply the Newton method to obtain the
initial guess. This provides a natural test to check whether the 𝜒2 minimizer finds a local minimum
or the global minimum. In addition, the Newton method reduces the number of iterations for the
𝜒2 minimizer dramatically. At present, the results which we present here are preliminary, but good
enough to insure that the Newton method is highly promising. Our final results will be available
soon. Please stay tuned for our future report.

Acknowledgments

The research of W. Lee is supported by the Mid-Career Research Program Grant [No. NRF-
2019R1A2C2085685] of the NRF grant funded by the Korean government (MOE). This work
was supported by Seoul National University Research Grant [No. 0409-20190221]. W. Lee would
like to acknowledge the support from the KISTI supercomputing center through the strategic
support program for the supercomputing application research [KSC-2017-G2-0009, KSC-2017-
G2-0014, KSC-2018-G2-0004, KSC-2018-CHA-0010, KSC-2018-CHA-0043, KSC-2020-CHA-
0001]. Computations were carried out in part on the DAVID supercomputer at Seoul National
University.

References

[1] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie Phys. Rev. D55 (1997) 3933–3957,
[hep-lat/9604004].

[2] M. B. Oktay and A. S. Kronfeld Phys. Rev. D78 (2008) 014504, [0803.0523].

[3] LANL-SWME Collaboration, J. A. Bailey, Y.-C. Jang, S. Lee, W. Lee, and J. Leem Phys.
Rev. D 105 (2022), no. 3 034509, [2001.05590].

[4] J. A. Bailey, T. Bhattacharya, R. Gupta, Y.-C. Jang, W. Lee, J. Leem, S. Park, and B. Yoon
EPJ Web Conf. 175 (2018) 13012, [1711.01786].

[5] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. P. Lepage, J. Shigemitsu, H. Trottier, and
K. Wong Phys. Rev. D75 (2007) 054502, [hep-lat/0610092].

9

http://xxx.lanl.gov/abs/hep-lat/9604004
http://xxx.lanl.gov/abs/0803.0523
http://xxx.lanl.gov/abs/2001.05590
http://xxx.lanl.gov/abs/1711.01786
http://xxx.lanl.gov/abs/hep-lat/0610092


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
3
6

The Newton method Benjamin J. Choi

[6] B. Yoon et al. Phys. Rev. D93 (2016), no. 11 114506, [1602.07737].

[7] A. Bazavov et al. Phys. Rev. D87 (2013), no. 5 054505, [1212.4768].

[8] A. Bazavov et al. Phys. Rev. D85 (2012) 114506, [1112.3051].

[9] C. G. Broyden IMA Journal of Applied Mathematics 6 (1970), no. 1 76–90.

[10] R. Fletcher The Computer Journal 13 (1970), no. 3 317–322.

[11] D. Goldfarb Mathematics of Computation 24 (1970), no. 109 23–26.

[12] D. F. Shanno Mathematics of Computation 24 (1970), no. 111 647–656.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes.
Cambridge University Press, 3 ed., 2007. pages 477–483.

[14] C. G. Broyden Mathematics of Computation 19 (1965), no. 92 577–593.

10

http://xxx.lanl.gov/abs/1602.07737
http://xxx.lanl.gov/abs/1212.4768
http://xxx.lanl.gov/abs/1112.3051

	Introduction
	Sequential Bayesian Method
	Numerical precision problem on covariance matrix inversion
	Rescaling method
	Correlation matrix method
	Comparison of the rescaling and correlation matrix methods

	 Application of the Newton method to the initial guess for the 2 minimizer 
	The Newton method
	Initial guess for the Newton method in the 1+0 fit
	Initial guess for the Newton method for the 1+1 fit with the scanning method

	Results
	Conclusion

