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We have completed a lattice QCD calculation of Δ< , the mass difference between the long-
and short-lived K mesons. The calculation was performed on a 643 × 128 lattice using 152
configurations with physical quark masses and an inverse lattice spacing of 1/0 = 2.36 GeV.
While the statistical error approaches a relatively small size of 9%, several sources of systematic
errors may have more significant effects. In this paper we will address studies performed on
smaller lattices to estimate the systematic errors in our result.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker
†This work was partially supported by US DOE grant #DE-SC0011941 and used computer time provided by the

Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources
of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:bw2482@columbia.edu
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
4
1

Calculating Δ< with lattice QCD Bigeng Wang

1. Introduction

The mass difference between the long- and short-lived K mesons, Δ< , is generated by K
meson mixing through Δ( = 2 weak interaction and is closely related to the indirect CP violation
parameter n . This tiny quantity has been precisely measured experimentally to be 3.484(6)×10−12

MeV [1] and the comparison between the prediction for this quantity by the standard model and
its experimental value will serve as a detector of new physics beyond the standard model. The
calculation has been extended from the first exploratory calculation with only connected diagrams
to full calculations on near-physical[2] and physical ensembles[3].

2. Non-perturbative calculation of Δ< using a renormalization scale above the
charm quark mass

Due to the Glashow–Iliopoulos–Maiani(GIM) mechanism, the dominant contribution to Δ< 
comes from the charm quark scale and below and the calculation can be better performed by making
the division of long and short distances at an energy scale larger than the charm mass and treating
the charm quark non-perturbatively by using two Δ( = 1 operators in a lattice calculation. The
 ! −  ( mass difference is expressed as:

Δ" = 2Re"00 = 2P
∑
=

〈 0 |�, |=〉〈=|�, | 0〉
< − �=

, (1)

where �, is the Δ( = 1 effective Hamiltonian:

�, =
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@@′
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@@′

2 ). (2)

To calculate Δ< we can integrate the four-point correlation functions over the time locations
of one of the weak operators with the other one being fixed as shown in Figure 1 and obtain the
single-integrated correlator:

A( ()) = 1
2!

C1+)∑
C2=C1−)

〈0|){ 0(C 5 )�, (C2)�, (C1) 0(C8)}|0〉. (3)

Figure 1: The single integration method on the lattice. The shadowed box refers to the region of integration.

Details about the method and the calculations with physical quark masses can be found in
Reference [4] and [5]. We have performed a calculation on an ensemble of 2+1 flavor gauge
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configurations with 0−1 = 2.36GeV and a 643 × 128 lattice volume using 152 configurations. Our
preliminary result for Δ< is:

Δ< = 5.8(0.6)stat × 10−12MeV. (4)

While the statistical error approaches a relatively small size of 9%, several sources of systematic
errors may have more significant effects.

3. Systematic errors

Two potentially important systematic errors come from finite-volume and finite lattice spacing
effects. The finite-volume correction to Δ< based on the formula proposed in Reference [6] is
estimated to be: Δ<�+

 
= −0.22(7) × 10−12 MeV. As for the finite lattice spacing effects, the O(02)

error due to the heavy charm is estimated to be the largest source of systematic error.

3.1 Sources of O(02) finite lattice spacing errors

After eliminating the O(0) finite lattice spacing errors by our choice of fermion action, we have
to estimate the remaining O(02) finite lattice spacing errors. The first possible source is associated
with the heavy charm quark we have included in our lattice calculation. The effect should be
proportional to the dimensionless quantity (<20)2. Determination of the size of this term will
allow us to estimate its contribution to our systematic error.

3.2 Scaling test on lattices with different lattice spacings

A scaling test, in which we measure the same physical quantities on several lattices with
different lattice spacings, can help us determine the size of the O(02) finite lattice spacing error and
give an estimate of how large these effects are.

Thus, in order to estimate the finite lattice spacing errors for our Δ< calculation, we perform
scaling tests focusing on the matrix elements obtained from three-point correlation functions and
four-point integrated correlators using two different lattice spacings. It’s economical to start with a
smaller lattice where the relatively large <20 value is examined. We perform the scaling tests on
the 24I and 32I ensembles and details about these two ensembles are listed in Table 1.

Lattice Action 0−1 Lattice V b+c !B <; <ℎ

name (F+G) (GeV) Volume
24I DWF+I 1.785(5) 243 × 64 × 16 2.13 1.0 16 0.0050 0.0400
32I DWF+I 2.383(9) 323 × 64 × 16 2.25 1.0 16 0.0040 0.0300
64I MDWF+I 2.359(7) 643 × 128 × 12 2.25 2.0 12 0.000678 0.02661
32IF DWF+I 3.15(2) 323 × 64 × 12 2.37 1.0 12 0.0047 0.0186

Table 1: Dynamical 2+1 flavor domain wall fermion lattices used in our Δ< calculation [7]. The fermion
and gauge (F+G) action abbreviations are: DWF = domain wall fermions, MDWF = Mobius domain wall
fermions, I = Iwasaki gauge action. <;/ℎ are the light and heavy sea quark masses in lattice units.

To obtain the input valence quark masses for the two ensembles which result in physical meson
masses on the two lattices which are consistent, we first set the physical values of meson masses
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to be the ones obtained from the calculation on the 32IF ensemble using its unitary quark masses.
Then based on several meson masses obtained on the 24I and 32I ensembles for various valence
quark masses[7], we perform interpolations to obtain the valence quark masses which yield physical
meson masses consistent with the 32IF meson masses described above using formulas from chiral
effective theory. The calculated valence quark masses and the expected meson masses are shown
in Table 2.

Lattice <G <H <c,pre0 <c,pre/MeV < ,pre0 < ,pre/MeV
24I 0.00667 0.0321 0.2079 371.15 0.3125 557.83
32I 0.00649 0.0249 0.1557 371.15 0.2332 557.83

Lattice <G,uni <H,uni <c,uni0 <c,uni/MeV < ,uni0 < ,uni/MeV
32IF 0.0047 0.0186 0.1179 371.15 0.1772 557.83

Table 2: Parameters related to the lattices for measurements. <G is the valence mass for light quarks: up
and down. <H is the valence mass for strange quark. The predicted pion mass <c,pre and the predicted kaon
mass < ,pre are displayed both in lattice units and in physical units.

3.3 Results from two-point functions

We expect our input valence quarkmasses to producemesons with equal physical masses on the
two different lattices. The results listed in Table 3 and Table 4 verify that not only light mesons like
pion and kaon, but also heavy charmed mesons with relatively large values of <2 , have consistent
masses. We can therefore conclude the quantities we have calculated on these two ensembles with
different lattice spacings are consistent in physics.

Lattice #conf <c /MeV <c0 <c,pre0 < /MeV < 0 < ,?A40

24I 186 371.3(7) 0.2080(4) 0.2079 556.2(7) 0.3116(4) 0.3125
32I 222 371.4(6) 0.1558(2) 0.1557 557.5(6) 0.2340(3) 0.2332

Table 3: The light meson masses resulting from light and heavy quark masses obtained from interpolation
calculations on the 32I and 24I ensembles.

<2 24I <2/GeV 24I <'2 /GeV 24I <� 24I/GeV <2 32I <2/GeV 32I <'2 /GeV 32I <� 32I/GeV
0.15 0.26775 0.4079 1.0891(27) 0.11 0.26775 0.4068 1.1151(9)
0.20 0.357 0.5439 1.2599(31) 0.15 0.357 0.5423 1.2940(10)
0.25 0.44625 0.6799 1.4142(37) 0.19 0.44625 0.6779 1.4563(11)
0.30 0.5355 0.8158 1.5550(43) 0.22 0.5355 0.8135 1.6057(11)
0.35 0.62475 0.9518 1.6836(50) 0.26 0.62475 0.9491 1.7442(12)

Table 4: <2 masses and corresponding D meson mass <� for the 24I and 32I ensembles, with renormalized
masses using mass renormalization factors /W

<,24I = 1.5235(13) and /W
<,32I = 1.5192(39)[7].

.

3.4 Scaling of three-point matrix elements

We can then examine how the matrix elements extracted from three-point functions scale on
these lattice ensembles. The three-point diagrams which contribute to 〈c |&8 | 0〉 matrix elements
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Figure 2:  to c diagrams. The upper two are figure-8 diagrams contracted with operator &1 (left) and &2
(right). The lower two are eye diagrams contracted with operator &1 (left) and &2 (right).

are shown in Figure 2. Compared to the eye diagrams shown in the bottom of Figure 2 having self-
loop parts, the figure-8 diagrams shown in the top of Figures 2 have relatively small statistical errors
and don’t involve the heavy charm quark which is the most probable source of large discretization
error.

If we can compare the results for only the contribution of the figure-8 diagrams to these
three-point functions, we can test the scaling violation with high precision. To perform such scaling
violation tests on the three-point functions and also on the four-point functions which wewill present
later, we have to establish that the set of diagrams we are studying is a well-defined portion of the full
physical amplitude by itself and has a continuum limit as the lattice spacing 0 approaches 0. In fact
such a continuum limit can be established based on a lower-level understanding of renormalization
and the continuum limit. A natural collection of graphs to study in isolation in a lattice calculation
is that in which the fermion propagators have a fixed topology, such as the present case of these
figure-8 diagrams. For a lattice calculation with a specific combination of quark propagators the
path integral provides a sum over all possible gluon emissions, gluon self-interactions and closed
fermion loop insertions. For such a single quark propagator topology, a continuum limit with
202 scaling follows from the renormalizability and chiral symmetry of DWF QCD provided the
quark propagator topology does not create new divergent sub-diagrams, not present in QCD. If
new divergent sub-diagrams do appear, such as the vertex correction arising from the exchange of
a gluon between two of the legs of a four-quark vertex resulting from an insertion of �, , then a
continuum limit with 202 scaling will still be guaranteed if these same graphs appear in the NPR
subtractions that are performed, a consideration which determines the quark propagator topology
used for the NPR procedure. Therefore, we would expect that the difference between such a figure-8
diagram and its continuum limit can be described by 202 where 2 is approximately a constant and
the possible logarithmic corrections to the 202 behavior are neglected.

Based on the relationship&± = (&1±&2), we can easily obtain the matrix elements 〈c |&± | 0〉
from linear combinations of results from &8 operators. The results for these figure-8 diagrams are
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Z factors Matrix elements in physical units
`/GeV Irrep 32I 24I 32I 24I Scaling violation

(0−1 =2.38GeV) (0−1 =1.78GeV) (0−1 =2.38GeV) (0−1 =1.78GeV)
2.15 (84,1) 0.52997(11) 0.47143(8) 0.003957(18) 0.004045(18) -2.19 %

(20,1) 0.58755(14) 0.57493(26) 0.011949(65) 0.009936(59) 18.39 %
2.64 (84,1) 0.52489(6) 0.46996(6) 0.003919(18) 0.004032(18) -2.84 %

(20,1) 0.60358(11) 0.58239(11) 0.012275(67) 0.010065(60) 19.78 %

Table 5: The Z factors of NPR in (W`, W`) scheme and 〈c |&± | 0〉(figure-8 only) in physical units on the
two lattice ensembles and different scale `. The relative scaling violations are listed in the last column.

Z factors Matrix elements in physical Unit
`/GeV Irrep 32I 24I 32I 24I Scaling violation

(0−1 =2.38GeV) (0−1 =1.78GeV) (0−1 =2.38GeV) (0−1 =1.78GeV)
2.15 (84,1) 0.60490(35) 0.55073(40) 0.004516(21) 0.004725(22) -4.51%

(20,1) 0.67062(61) 0.67164(46) 0.013638(74) 0.011608(69) 16.08%
2.64 (84,1) 0.58968(16) 0.53025(13) 0.004403(20) 0.004549(21) -3.27%

(20,1) 0.67807(31) 0.65711(32) 0.013790(75) 0.011357(68) 19.35%

Table 6: The Z factors of NPR in (W`, @) scheme and 〈c |&± | 0〉(figure-8 only) in physical units on the two
lattice ensembles and different scale `. The relative scaling violations are listed in the last column.

listed in Table 5 and Table 6 at ` = 2.15 GeV and ` = 2.64 GeV. The figure-8 matrix element
of the operator &+ which belongs to the (84,1) representation has a small scaling violation of
size ∼ 2 − 4%, while the figure-8 matrix element of the operator &− which belongs to the (20,1)
representation has a large scaling violation of size ∼ 20%.

Even in the absence of a heavy charm quarks, such an unexpectedly large scaling violation as
appears in the matrix element of &− operator is not unique. As shown in our previously published
paper[8],  → cc matrix elements calculated from operators belonging to the (8,8) irreducible
representation also show similarly large finite lattice spacing errors as shown in Table XIV of
Reference [8].

3.5 Scaling of four-point single-integrated correlation functions

Similar to the three-point scaling tests, we perform a series of scaling tests for the contribution
from four-point diagrams of type 1 and type 2, which are all connected. We also need to calculate
three-point matrix elements 〈c |&;0C± | 0〉 to remove the exponentially increasing terms from the
single-integrated four-point correlators.

In this case, only connected diagrams are calculated, and only up quark can appear in our
intermediate states. When we calculate the three-point matrix elements 〈c |&;0C± | 0〉, we must use
the interpolating operator $ c0 = 8DW5D rather than $ c0 = 8(DW5D − 3W53)/

√
2 and only include

figure-8 diagrams shown in Figure 2 since without disconnected diagrams the combination DW5D

and 3W53 behave as independent degenerate mesons[9].
We perform the scaling tests on the single-integrated four-point correlation functions. For

the relatively light input charm masses used here, the correlation function is highly non-local and
limited by the lattice size, we can not use a sufficiently large ) to extract Δ< from the single
integration as discussed in Section 2. However, because the single-integrated correlator itself is a
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Figure 3: The single-integrated correlators with two &+ operators plotted as a function of <� on the 24I
ensemble (left) and on the 32I ensemble (right).

Figure 4: The ratio of the single-integrated correlators with two &+ operators on the 32I and 24I ensembles
plotted as a function of <� .

physical quantity with a continuum limit, we can perform the scaling tests on the single-integrated
four-point correlators for the operators&± if we use consistent physical integration ranges on the two
different lattices. To remove the $ (0) errors from difference in the integration range for the single
integration, we perform interpolations on the 24I ensemble to match the integration cutoff value on
the 32I ensemble, which is )cut = 5.87 GeV−1 and evaluate the integral using the trapezoidal rule.

The single-integrated correlators with two &+ operators and a fixed integration cutoff )cut =

5.87 GeV−1 are plotted as a function of D meson mass in Figure 3. We take the ratios between
the results on the two lattices with the same D meson masses in physical units for various charm
masses. If the charm quark is the dominating source of scaling violation, as we reduce the charm
mass, the ratio between different lattice spacing should approach 1. This can be verified in Figure
4. On the 64I ensemble, the <20 = 0.32 ∼ 0.33 gives the physical D meson masses. To estimate
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the finite lattice spacing effect for our lattice calculation on the 64I ensemble, we mark the point
where <20 = 0.32 on the coarser 24I ensemble and find the scaling violation is about 5%.

Figure 5: The single-integrated correlators with two &− operators plotted as a function of <� on the 24I
ensemble (left) and on the 32I ensemble (right).

Figure 6: The ratio of the single-integrated correlators with two &− operators on the 32I and 24I ensembles
plotted as a function of <� .

Similarly, in Figure 5, we plot the single-integrated correlators with two &− operators on the
24I and 32I ensembles. In Figure 6, we plot the ratios between the results on the two lattices as a
function of physical D meson mass. The scaling violation at <20 = 0.32 is about 14%. However,
we find the ratio for the case with two&− operators is not approaching 1 as the charmmass becomes
smaller but instead approaching a ratio which is about 1.4. This indicates that in addition to the
scaling violation introduced by the heavy charm quark, the scaling error for the four-point integrated
correlators with two &− operators, can be as large as 40%.
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In our Δ< calculation, we have combinations of four-point correlation functions with&+ and
&− operators. Based on the scaling tests performed on the 24I and 32I ensembles, we estimate the
finite lattice spacing error to be of order of 40%.

4. Conclusion and outlook

Our preliminary result for Δ< based on 152 configurations with physical quark masses is:

Δ< = 5.8(0.6)stat(2.3)sys × 10−12MeV. (5)

Here the first error is statistical and the second is an estimate of largest systematic error, the dis-
cretization error, based on the scaling tests performed on the 24I and 32I ensembles. A comparison
between our Δ< value and the experimental value 3.484(6) × 10−12 MeV [1] suggests reasonable
agreement given the large finite lattice spacing errors. Future calculations on a 963 × 196 lattice
together with this completed calculation on the 643 × 128 ensemble with physical quark masses,
will allow the continuum limit to be explored.
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