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A method to estimate observables with infinite variance in fermionic systems Cagin Yunus

1. Introduction

In a Monte Carlo simulation of a Lattice QFT model, depending on the parameters of the
Lagrangian, one may sample field configurations with probability weights arbitrarily close to 0. Then,
there will be random variables that have an infinite variance. In particular, such large variances are
expected for correlation functions constructed from large number of fermionic propagators. A similar
problem in the context of the condensed matter physics was investigated in [5].

In order to construct confidence intervals for the mean of the random variable from the sample
standard deviation one typically employs the Central Limit Theorem. However, for a random variable
with infinite variance, the Central Limit Theorem does not apply1.

We will propose two methods to overcome this issue. The first method we propose is applicable to
fermionic theories where Hubbard-Stratonovich transformation is used to construct auxiliary bosonic
variables. We introduce a discrete version of the Hubbard-Stratonovich transformation which generates
discrete auxiliary bosonic variables. In this approach, the variance will be finite although can be very
large for specific model parameter choices. We will see that while there are instances where this method
is useful, it is not practical for large lattice sizes. The second method we propose is a reweighting
method which is applicable to semi positive random variables. In this method, the mean of a random
variable is expressed as the product of the means of the several random variables each having finite
variance. We will test the first method for a toy model and the second method for the 2D Gross-Neveu
model.

1.1 An example in Euclidean Field Theory

The partition function of a Euclidean theory involving bosonic fields𝑈 and biliniear in fermionic
fields Ψ can be written as:

𝑍 =

∫
D[ΨΨ̄]D[𝑈]𝑒−𝑆 [𝑈 ]−Ψ̄𝐷 [𝑈 ]Ψ

=

∫
D[𝑈]𝑒−𝑆 [𝑈 ] det 𝐷 [𝑈]

=

∫
D[𝑈]𝑒−𝑆 [𝑈 ]

𝑁𝐷∏
𝑎=1

𝜆𝑎 [𝑈]

(1)

in the third line the fermions are integrated exactly and where 𝑁𝐷 is the number of eigenvalues 𝜆𝑎 of
the Dirac operator 𝐷 [𝑈] which is finite in a discretized theory in a finite volume. We will assume
that 𝐷 [𝑈] is diagonalizable for all 𝑈. Then, 𝐷 [𝑈] can be written as 𝐷 [𝑈] = 𝑄 [𝑈]Λ[𝑈]𝑄−1 [𝑈].
If 𝑉𝑘 =

∏𝑘
𝑛=1 Ψ̄𝑖𝑛Ψ 𝑗𝑛 is any product of 𝑘 fermion bilinears, then after integrating over the fermionic

fields its expectation value can be written as a sum of products of inverses of 𝑘 eigenvalues of the

1Sample variance for a random variable with infinite variance is also not meaningful, in the sense that it doesn’t converge
to a particular value as the sample size is increased. Furthermore, it must be stressed that the Central Limit Theorem is valid
only asymptotically, that is, as the sample size goes to infinity. Therefore, similar issues will arise when the variance of a
random variable is finite but very large compared to its mean squared.
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Dirac operator. Precisely2,

⟨𝑉𝑘 · · ·⟩ =
1
𝑍

∫
D[𝑈]𝑒−𝑆 [𝑈 ]

𝑁𝐷∏
𝑏=1

𝜆𝑏 [𝑈]
∑︁
𝜋∈𝑆𝑛

sgn (𝜋)
𝑘∏

𝑛=1

𝑁𝐷∑︁
𝑎=1

1
𝜆𝑎 [𝑈] 𝑣

(𝑎)
𝑖𝑛

[𝑈]𝑤 (𝑎)
𝑗𝜋 (𝑛)

[𝑈] (· · · ) (2)

where · · · is any operator insertion that does not coincide with any of the fermions in𝑉𝑘 . One can project
products of inverses of eigenvalues 𝜆𝑎 by considering (𝑈 dependent) linear combinations of 𝑉𝑘 as
follows. Let us define a new operator O𝑎1, · · · ,𝑎𝑘

by O𝑎1, · · · ,𝑎𝑘
=

∏𝑘
𝑛=1

∑
𝑖𝑛 , 𝑗𝑛

𝑤
(𝑎𝑛)
𝑖𝑛

[𝑈]𝑣 (𝑎𝑛)
𝑗𝑛

[𝑈]Ψ̄𝑖𝑛Ψ 𝑗𝑛

where it is assumed that 𝑎𝑚 ≠ 𝑎𝑛 for 𝑚 ≠ 𝑛. A natural estimator for O𝑎1, · · · ,𝑎𝑘
is given by:

Ô𝑎1, · · · ,𝑎𝑛 =
1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

1∏𝑘
𝑛=1 𝜆𝑎𝑛 [𝑈𝑖]

(3)

where 𝑁𝑆 is the sample size. Difficulties arise when one of the eigenvalues, say 𝜆𝑎1 [𝑈], vanishes at
𝑈 = 𝑈∗. In such a case, (𝜃 and hence the observable 𝑉𝑘 associated with it) becomes infinite. We will
call such confiigurations exceptional configurations. We note that the probability of sampling𝑈∗ is 0
since the probability distribution at𝑈 is proportional to det 𝐷 [𝑈] = ∏𝑁𝐷

𝑎=1 𝜆𝑎 [𝑈] and thus observables
with a single inverse power of 𝜆𝑎, are finite even in this case. However, the variance of such a quantity
will contain 𝜆−2

𝑎 and so will be strictly infinite. It is easy to see that Ô𝑎1 has infinite variance. The above
explains how infinite variance can arise LQFT calculations of complicated theories such as QCD. In a
quenced version of the theory the determinant is absent and even the observable will have an infinite
contribution. In partially-quenched or mixed-action QCD, where the fermion actionis different in the
measure and in defining observables, the observable O𝑎1, · · · ,𝑎𝑘

is similarly ill-defined.

2. Simple examples with infinite variance

To investigate infinite variance in Monte Carlo sampling, two simple models are introduced and
the particulars of infinite variance correlation functions in each model are presented.

2.1 A Toy Model

We will consider a toy model that exhibits most of the issues we are concerned with. It is
a zero dimensional (Euclidean) QFT model of interacting fermions3. The Lagrangian is given as
L = 𝑚Ψ̄Ψ − 𝑔

2
(
Ψ̄Ψ

)2. The standard way of getting rid of the quadratic term is to introduce an
auxiliary field through the Hubbard-Stratonovich transformation. After fermions are integrated, one
obtains 𝑍 [𝜂] =

∫
𝑑𝜙 𝑒

− 1
2 𝜙

2+𝜂̄ 1
𝑚+√𝑔𝜙

𝜂 (𝑚 + √
𝑔𝜙)2𝑁 𝑓 . In a Monte Carlo simulation, one will use

2The columns 𝑣 (𝑎) [𝑈] of𝑄 [𝑈] are right eigenvectors of 𝐷 [𝑈] and the rows (𝑤 (𝑎) )𝑇 [𝑈] of𝑄−1 [𝑈] are left eigenvectors
of 𝐷 [𝑈]. They satisfy (𝑤 (𝑎) )𝑇 [𝑈]𝑣 (𝑏) [𝑈] = 𝛿𝑎𝑏 .

3The fermions will be denoted by Ψ =
©­­«
Ψ1
· · ·
Ψ𝑁 𝑓

ª®®¬ and Ψ̄ =

(
Ψ̄1 · · · Ψ̄𝑁 𝑓

)
where Ψ𝑖 =

(
Ψ
↑
𝑖

Ψ
↓
𝑖

)
, Ψ̄𝑖 =

(
Ψ̄
↑
𝑖

Ψ̄
↓
𝑖

)
are two component

Grassmannian variables.
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𝑃(𝜙) ∝ 𝑒−
1
2 𝜙

2 (
𝑚 + √

𝑔𝜙
)2𝑁 𝑓 as the probability weight. Suppose we are interested in the observable

O =
∏2𝑁 𝑓

𝑖=1
∏

𝑠=↑,↓ Ψ̄
𝑠
𝑖
Ψ𝑠
𝑖
. In terms of the auxiliary field, expectation value of the O is given as:

⟨O⟩ =
∫
𝑑𝜙 𝑒−

1
2 𝜙

2∫
𝑑𝜙𝑒−

1
2 𝜙

2 (
𝑚 + √

𝑔𝜙
)2𝑁 𝑓

(4)

It is clear from the above expression that ⟨O⟩ is finite. However, one will run into trouble while
calculating this quantity in a Monte Carlo simulation. This happens because one estimates the
expectation value of the observable by the following estimator in a Monte Carlo simulation ⟨O⟩𝑀𝐶 =

1
𝑁𝑠

∑𝑁𝑠

𝑛=1 O(𝜙𝑛) where 𝑁𝑠 is the sample size and O(𝜙) =
(
𝑚 + √

𝑔𝜙
)−𝑁 𝑓 is the representation of the

observable in terms of the auxiliary field. We see that, this quantity has a singularity at 𝜙∗ = − 𝑚√
𝑔
. In

fact, the variance of this estimator is divergent as the second moment diverges:

〈
O2(𝜙)

〉
=

∫
𝑑𝜙 𝑒−

1
2 𝜙

2 (
𝑚 + √

𝑔𝜙
)−2𝑁 𝑓∫

𝑑𝜙𝑒−
1
2 𝜙

2 (
𝑚 + √

𝑔𝜙
)2𝑁 𝑓

= ∞ (5)

2.2 Gross-Neveu Model

The Gross-Neveu (GN) model [2] is a simple model of fermions in 𝑑 = 2 dimensions (where
it is renormalizable) interacting via four-fermion couplings that shares some important properties
with QCD. Notably it is asymptotically free and demonstrates chiral4 symmetry breaking. These
properties make the Gross-Neveu model useful as a simple testing ground for new ideas that may
eventually be applied to QCD. The Lagrangian of the Gross-Neveu model in the continuum is given
by: L = Ψ̄

(
�𝜕 + 𝑚

)
Ψ− 𝑔

2
(
Ψ̄Ψ

)2. In this work, we will consider the Gross-Neveu model on the lattice
with Wilson fermions and 𝑁 𝑓 = 2 species.

3. Discrete Hubbard-Stratonovich Transformation

The continuous Hubbard-Stratonovich transformation is valid for all commuting variables Φ and
is given by:

𝑒
1
2Φ

2
=

1
√

2𝜋

∫
𝑑𝑢 𝑒−

1
2𝑢

2+𝑢Φ (6)

However, in problems where Φ is constructed out of fermions, the above equation is only required to
satisfied up to an even power of Φ which we will denote by5 2𝑁 𝑓 since Φ2𝑁 𝑓 +1 = 0 because of the
anticommuting nature of the fermion fields. This observation brings the possibility of solving this
equation by introducing an auxiliary variable that takes values in a discrete finite set. We aim to solve
the following equation (here 𝑤𝑎 should be positive to have a probabilistic representation and 𝑡𝑎 should
be real to avoid a sign problem):

𝑒
1
2Φ

2
=

∑︁
𝑎

𝑤𝑎𝑒
𝑡𝑎Φ (7)

4For the version of the model we are discussing, it is a discrete version of the chiral symmetry. But it is easy to modify
the action to obtain a theory with the continuous chiral symmetry.

5In theories that have spinor dimension 2, 𝑁 𝑓 is the number of fermions.
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where Φ is assumed to satisfy Φ2𝑁 𝑓 +1 = 0. Now we consider Φ as a real variable and interpret the
above equation (we make the transformation Φ → 𝑖Φ) as equality of the two real power series in Φ up
to the 2𝑁 𝑓 th order in Φ:

𝑒−
1
2Φ

2
=

∑︁
𝑎

𝑤𝑎𝑒
𝑖𝑡𝑎Φ + O

(
Φ2𝑁 𝑓 +1

)
where Φ ∈ R (8)

We may also think of the series on the left and the right side as the characteristic functions6 of the
two probability densities in the conjugate variable 𝑡. These densities are given as 1√

2𝜋
𝑒−

1
2 𝑡

2 and∑
𝑎 𝑤𝑎𝛿(𝑡 − 𝑡𝑎), respectively. Then, the condition (7) is equivalent to the following: if 𝑓 (𝑡) is a

polynomial of degree at most 2𝑁 𝑓 , then it needs to satisfy the following equation:

1
√

2𝜋

∫ ∞

−∞
𝑑𝑡 𝑒−

1
2 𝑡

2
𝑓 (𝑡) =

∑︁
𝑎

𝑤𝑎 𝑓 (𝑡𝑎) (9)

This equation can be solved using the method of Gaussian quadrature. Explicitly, if He𝑛 (𝑡) are
the (probabilist’s) Hermite polynomial7 then 𝑡𝑎 are the roots of He𝑁 𝑓 +1(𝑡) and 𝑤𝑎 are given by

𝑤𝑎 =
(𝑁 𝑓 !)2

He′
𝑁𝑓 +1 (𝑡𝑎)He𝑁𝑓

(𝑡𝑎) .

A less general discrete version of the Hubbard-Stratonovich transformation was first proposed
in [3]. This transformation has proven to be useful for Quantum Monte Carlo simulations, see for
example [1] and [6].

3.1 Discrete Sampling vs. Continuous Sampling for the Toy Model

In the context of the toy model, we compare the discrete Hubbard-Stratonovich transforma-
tions to the continuous Hubbard-Stratonovich transformation and discrete transformations to each
other by inspecting the mean and the logarithm of the standard deviation of the observable O =∏2𝑁 𝑓

𝑖=1
∏

𝑠=↑,↓ Ψ̄
𝑠
𝑖
Ψ𝑠
𝑖

as a function of sample size. In Figure 1a, we show the logarithm of the standard
deviation of O against the logarithm of the standard deviation of the sample size. In Figure 1b, we
show the mean of O against the sample size for the parameters 𝑚 =

√
3 and 𝑔 = 1.0. One expects the

slope of 𝑙𝑜𝑔(𝑠𝑡𝑑 (O)) to converge to −0.5. While this is observed to be correct for discrete sampling,
one observes that jumps continue over the sample sizes that could be investigated for the continuous
sampling. We further note that it is possible to choose 𝑚 and 𝑔 such that the exceptional configuration
is one of the roots of the He𝑁 𝑓 +1(𝑡). In this case, the discrete sampling will obey the correct scaling
law however the mean will be biased.

We have chosen the parameters such that the exceptional configuration (𝜙∗ = −
√

3) is extremely
close to one of the roots of He3. There are several observations to make:

• In Figure 1a the plot of He8 exhibits jumps because it has a root that is very close to the
exceptional configuration 𝜙∗ = −

√
3. The probability of sampling this root is 𝑝 ≃ 3 × 10−7 and

one expects to sample this root about 30 times within a sample size of 𝑁𝑆 = 108. Indeed we
observe that the first jump appears around 𝑁𝑆 ∼ 1

𝑝
with later jumps that are less noticeable.

6Characteristic function of a random variable 𝑋 is defined as 𝜙(𝑡) =
〈
𝑒𝑖𝑡𝑋

〉
.

7He𝑛 (𝑡) = (−1)𝑛𝑒
1
2 𝑡

2 𝑑𝑛

𝑑𝑡𝑛
𝑒−

1
2 𝑡

2
.
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• In Figure 1a the plot of He3 doesn’t exhibit any jumps although it has a root that is extremely
close the exceptional configuration. This is because the sample size 𝑁𝑆 = 108 is not large enough
to hit the root that is close to the exceptional configuration which has probability 𝑝 ≃ 10−13.
However, since the net contribution of this root is large, we observe a bias for the mean of O.
This bias should start to disappear for 𝑁𝑆 ≳ 1013 and one would start to see jumps in the plot
of standard deviation. For 𝑁𝑆 ≫ 1013 both bias and jumps will disappear.

• We further investigate the last point by changing the mass in Figure 1d. We don’t see any jumps
for 𝑚 = 1.03 because the roots are not close to the exceptional configuration. We observe that
as we approach 𝑚 = 1.73 jumps starts to appear before disappearing again.

0 1 2 3

log10( NS

105 )
5

4

3

2

lo
g 1

0(
)

Nf = 2, m = 1.73, g = 1.0

Continuous
Hermite3
Hermite4
Hermite5
Hermite6
Hermite7
Hermite8
Hermite9

Figure 1(a): Logarithm of the standard deviation of O vs. loga-
rithm of the sample size for 𝑚 = 1.73, 𝑔 = 1.0 and 𝑁 𝑓 = 2 with
various sampling schemes for the toy model.

0 250 500 750 1000
NS

105

0.030

0.035

0.040

0.045

Nf = 2, m = 1.73, g = 1.0

Continuous
Hermite3
Hermite4
Hermite5
Hermite6
Hermite7
Hermite8
Hermite9

Figure 1(b): Ratio of the sample mean of O to mean of O vs.
sample size for 𝑚 = 1.73, 𝑔 = 1.0 and 𝑁 𝑓 = 2 with various
sampling schemes for the toy model.

0 1 2 3

log10( NS

105 )
5

4

3

2

lo
g1

0(
st

d(
))

Hermite3

m=1.03
m=1.43
m=1.53
m=1.63
m=1.73
m=1.83
m=1.93
m=2.03
m=2.43

Figure 1(c): Logarithm of the standard deviation of O vs. log-
arithm of the sample size for various 𝑚, 𝑔 = 1.0 and 𝑁 𝑓 = 2.
He3 is chosen for the discrete sampling scheme. Total sample
size is 𝑁𝑆 = 108.

0 250 500 750 1000
NS

105

0.8

0.9

1.0

1.1

1.2

Hermite3

m=1.03
m=1.43
m=1.53
m=1.63
m=1.73
m=1.83
m=1.93
m=2.03
m=2.43

Figure 1(d): Ratio of the sample mean of O to mean of O vs.
sample size for various 𝑚, 𝑔 = 1.0 and 𝑁 𝑓 = 2. He3 is chosen
for the discrete sampling scheme. Total sample size is 𝑁𝑆 = 108.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
4
5

A method to estimate observables with infinite variance in fermionic systems Cagin Yunus

3.2 Summary

The discrete sampling schemes we have proposed has finite variance by construction. Further-
more, it is useful for calculating exact quantities for small lattices and elucidating the underlying issues
of infinite variance. However, as this variance can be very large this scheme may not be practically
feasible. In fact ongoing work shows that the discrete sampling scheme does not solve issues we have
explored for the 2𝑑 Gross-Neveu model with a lattice size as small as 𝐿 = 8 × 8.

4. Reweighting

In this section, we suggest a more general method to sample observables with infinite variance by
dismantling the difference between the probability measure and the observable gradually.

Assume that we have a (unnormalized) probability weight 𝑃(𝑥) and a positive observable we want
to estimate O(𝑥). One wants to calculate ⟨O⟩ =

∑
𝑥 𝑃 (𝑥) O (𝑥)∑

𝑥 𝑃 (𝑥) . A standard estimator for this quantity
is given by Ô = 1

𝑁𝑠

∑𝑁𝑠

𝑖=1 O(𝑥𝑖) where 𝑥𝑖 has sampled with respect to the probability weight 𝑃(𝑥). If
the second moment of O with respect to 𝑃(𝑥) is infinite then the expected variance of this estimator
is not defined. To overcome this issue, we will introduce new (unnormalized) probability weights
𝑃𝜇 (𝑥) ≡ 𝑃(𝑥)O(𝑥)𝜇. Note that 𝑃0(𝑥) = 𝑃(𝑥). We will denote the expectation value of an observable
with respect to 𝑃𝜇 (𝑥) by ⟨ · ⟩𝜇. Now it is easy to verify that:

⟨O⟩ =
𝑁−1∏
𝑟=0

〈
O(𝑥)1/𝑁

〉
𝑟
𝑁

, (10)

where 𝑁 is a positive integer. One expects that for a suitable 𝑁 , the estimators 1
𝑁𝑟

∑𝑁𝑟

𝑖=1 O(𝑥𝑖)
1
𝑁 where

𝑥𝑖 are sampled with respect to 𝑃 𝑟
𝑁
(𝑥) will have finite variance for 𝑟 = 0, · · · , 𝑁 − 1. If this is the case,

then a new estimator Õ of ⟨O⟩ is given by:

Õ =

𝑁−1∏
𝑟=0

(
1
𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟=1

O
(
𝑥𝑖𝑟

))
(11)

where 𝑥𝑖𝑟 are sampled with respect to 𝑃 𝑟
𝑁
(𝑥).

Figure 2 represents the results of the estimator Õ for the Gross-Neveu model for 𝑁 = 10 and
𝐿 = 2 × 2 with varying sample sizes where O =

∏2
𝑖=1

∏
𝜎=↑,↓ Ψ̄

𝜎
𝑖
(1, 1)Ψ𝜎

𝑖
(1, 1). We also compare

different step numbers for a total sample size (TSS) of 107. We use the median of the means estimator
to determine the confidence intervals, see [4] for further details.
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6 7 8
log10(Total Sample Size)

0.010

0.015

0.020

0.025

0.030

0.035

GN : L = 2 × 2, N = 10 steps, m = 1.5, g = 2.0

cl=0.6827
cl=0.9545
cl=0.9973
exact

Figure 2(a): Estimators for the mean of O obtained with median
of the means estimator for various sample sizes and for 𝑁 = 10
steps for the Gross-Neveu model with 𝐿 = 2 × 2, 𝑚 = −1.5,
√
𝑔 = 2.0. The purple line shows the exact value obtained

with discrete sampling scheme. The abbreviation "cl" refers to
"confidence level".
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Estimators for the mean of O obtained with median of the means
estimator for various step numbers and for total sample size
𝑇𝑆𝑆 = 107 for the Gross-Neveu model with 𝐿 = 2×2, 𝑚 = −1.5,
√
𝑔 = 2.0. The purple line shows the exact value obtained with

the discrete sampling scheme. The abbreviation "cl" refers to
"confidence level".

5. Conclusions

We have developed a discrete sampling scheme to overcome the issue of infinite variance. It is
observed that while the resulting estimators have finite variances, the variances can be very large and
therefore these estimators may be impractical. We further developed another sampling scheme which
may be applied in any context where it is possible to generate configurations in a Monte Carlo setting
and the observable one is interested in is non-negative. We stress that while the method is constructed
to estimate observables with infinite variances, it is also expected to be useful in situations with finite
but very large noise to signal ratios.
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