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Quantum computing promises the possibility of studying the real-time dynamics of non-
perturbative quantum field theories while avoiding the sign problem that obstructs conventional
lattice approaches. Current and near-future quantum devices are severely limited by noise, making
investigations of simple low-dimensional lattice systems ideal testbeds for algorithm development.
Considering simple supersymmetric systems, such as supersymmetric quantum mechanics with
different superpotentials, allows for the analysis of phenomena like dynamical supersymmetry
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theories, targeting real-time dynamics and supersymmetry breaking effects.
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1. Introduction
Supersymmetry is an extension of Poincaré symmetry to include spinor generators relating

bosonic and fermionic fields. Supersymmetric theories have rich features including appearance in
holographic dualities [1] which are a correspondence between spacetime in quantum gravity and
a quantum field theory on its boundary. The existence of dualities enables the indirect study of
phenomena in quantum gravity, such as the dynamics of evaporating black holes. Instead of solving
the quantum gravity problem it is sufficient to study the quantum field theory. In this realm lattice
regularization provides a non-perturbative approach via both importance-sampling algorithms in
classical computing as well as the developing frontier of quantum simulation. Here we study
simple supersymmetric systems using quantum computing, which in principle offers direct access
to real-time dynamics of quantum field theories. Beyond this, quantum computing may enable
the investigation of entanglement generation [2], dynamical supersymmetry breaking (which has a
severe sign problem [3, 4]), and real-time scattering of particles in supersymmetric extensions of
the standard model.

Quantum computing is currently in the Noisy Intermediate Scale Quantum (NISQ) era [5] of
quantum devices with low qubit counts and significant error rates for the operations on qubits. The
solution to an evaporating black hole or real-time scattering are beyond the capabilities of NISQ
devices. Modern quantum computers are best suited to validating algorithmic advances on simple
test case systems. Here we will study simple supersymmetric quantum mechanics (SQM) with
two supercharges in 0 + 1 dimensions. This system was recently studied with classical-computing
lattice methods by Refs. [6–8], which explored dynamical supersymmetry breaking for different
superpotentials. Similar supersymmetric matrix models are also under consideration as targets for
quantum computing [9–11]. In this work we will study dynamical supersymmetry breaking for
three different superpotentials. In Section 2 we define SQM in more detail and discuss how to
test whether supersymmetry is spontaneously broken. Then in Section 3 we discuss the necessary
quantum computing technology to analyze our supersymmetric system. Our progress is presented
in Section 4 including determinations of supersymmetry breaking and the feasibility of studying
SQM on NISQ devices.

2. Supersymmetric Quantum Mechanics
In this section we review SQMwith two supercharges in 0+1 dimensions. We start by defining

the Hamiltonian
2�SQM = 28mC =

{
&,&

}
= && +&&, (1)

where & and & are two independent supercharges with &2 = &
2
= 0 and [�,&] = [�,&] = 0.

These can be expressed in terms of bosonic and fermionic operators as

& = 1̂ [8 ?̂ +, ′(@̂)] & = 1̂† [−8 ?̂ +, ′(@̂)] , (2)

where @̂ and ?̂ are the bosonic coordinate and conjugate momentum operators respectively. The
function , (@̂) is the superpotential, and the prime denotes derivatives with respect to @̂. The
fermionic operators 1̂† and 1̂ create and destroy a fermionic state respectively, with 1̂2 = (1̂†)2 = 0
and

{
1̂, 1̂†

}
= 1.
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Using the above equations it is instructive to write down the Hamiltonian in terms of bosonic
and fermionic operators, for which

2�SQM = ?̂2 + [, ′(@̂)]2 −, ′′(@̂)
[
1̂†, 1̂

]
. (3)

The coupling between the fermion and boson depends entirely on the superpotential. The Hilbert
space of the Hamiltonian is the tensor product of the Hilbert space of a single boson with that of a
single fermion. The continuous bosonic Hilbert space can be written with the basis |q〉 where

〈q′ | q〉 = X(q′ − q), @̂ |q〉 = q |q〉 , 48 ?Δ |q〉 = |q + Δ〉 . (4)

The fermionic Hilbert space is a two-dimensional vector space spanned by |0〉 and |1〉 with

1̂ |1〉 = |0〉 1̂† |1〉 = 0
1̂ |0〉 = 0 1̂† |0〉 = |1〉 . (5)

The bosonic Hilbert space needs to be regulated to map the degrees of freedom to a finite number
of qubits, which we will discuss in Section 3.

In this work we consider superpotentials for which the bosonic part of the Hamiltonian can be
written as a harmonic oscillator plus additional interactions, [, ′]2 ⊃ <2@̂2, where < is the mass of
the particles. It is thus useful to transform from the @̂, ?̂ basis to the 0̂†, 0̂ creation and annihilation
operator basis of a harmonic oscillator, through the usual definitions

0̂ =

√
<

2
@̂ + 8
√

2<
?̂, 0̂† =

√
<

2
@̂ − 8
√

2<
?̂. (6)

The SQM Hamiltonian in Eq. 1 is manifestly supersymmetric, but supersymmetry may break
spontaneously depending on the superpotential. One way to study dynamical supersymmetry
breaking is to compute the Witten index [12]

W = Tr
[
(−1)� 4−8�C

]
= Tr�

[
4−8�C

]
− Tr�

[
4−8�C

]
. (7)

Here the first trace over all states of theHilbert space is split into traces over the bosonic and fermionic
parts of the Hilbert space. A vanishing Witten index, W = 0, is a necessary but insufficient
condition for supersymmetry breaking, and corresponds to a vanishing partition function / = 0
that obstructs classical importance-sampling computations [3, 4]. Turning to quantum computing,
a more straightforward approach is to exploit the fact that supersymmetry is broken only if the
ground-state energy is non-zero. Computing the ground-state energy is a task well suited for the
variational quantum eigensolver (VQE) to be discussed in the next section.

3. Quantum Computing
To enable computations on a quantum computer we must regulate the infinite bosonic degrees

of freedom. We impose a hard cutoff Λ of the boson by limiting the number of accessible modes
of the harmonic oscillator. While this explicitly breaks supersymmetry, we expect that these effects
will become negligible for sufficiently large Λ. The raising and lowering operators become

0̂ =

Λ−2∑
==0

√
= + 1 |=〉 〈= + 1| , 0̂† =

Λ−2∑
==0

√
= + 1 |= + 1〉 〈=| . (8)
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Having a Hilbert space with a finite number of degrees of freedom, we can convert the harmonic
oscillator degrees of freedom to qubit ones. The first step is to write the state 9 in binary as
9 =

∑#−1
8=0 1828 with # = dlog2 Λe. We associate one qubit with each binary digit, and write the

state as a tensor product of # qubit states,

| 9〉 = |10〉 |11〉 . . . |1#−1〉 . (9)

Using this, we can translate the matrix element of any bosonic operator into its representation in
terms of the qubit degrees of freedom,

|=〉 〈=′ |= ⊗#−1
8=0 |18〉

〈
1′8

�� . (10)

It is useful to write the tensor product on the right hand side in terms of Pauli matrices using the
following four relations,

|0〉 〈1| = 1
2
(- + 8. ) , |1〉 〈0| = 1

2
(- − 8. ) , (11)

|0〉 〈0| = 1
2
(1 + /) , |1〉 〈1| = 1

2
(1 − /) . (12)

Any bosonic operator can thus be expressed as a linear combination of products of Pauli matrices,
called a Pauli string.

For the fermionic degrees of freedom we use the Jordan–Wigner transformation which maps
the fermionic occupation to spin degrees of freedom. The creation and annihilation operators are

1̂† =
1
2
(- − 8. ) , 1̂ =

1
2
(- + 8. ) . (13)

We will always assign the fermionic degree of freedom to the # + 1 qubit. The mapping from
bosonic and fermionic degrees of freedom to qubit ones results in the Hamiltonian as a single Pauli
string. This allows us to take advantage of IBMQiskit [13] implementations of quantum algorithms
such as Trotter evolution and the VQE algorithm. We conclude this section by briefly reviewing
each of these algorithms in turn.

First, to study real-time dynamics we need a quantum circuit for the operation 48�C acting on
the qubits. This can be done with the Suzuki–Trotter decomposition which breaks the continuous
time C into # ‘Trotter steps’ of size X ≡ C/# via

4−8�C |k〉 = (exp [−8�X])# |k〉 . (14)

For a Hamiltonian that is a sum of " terms, � =
∑"
9=1 � 9 , a single step becomes

|k(C + X)〉 ≡ exp
−8

"∑
9=1

� 9X

 |k(C)〉 .
In practice " > 1 and the Baker–Campbell–Hausdorff formula is used to convert the exponential
of the sum � into a product of exponentials involving individual � 9 . Since these various terms in
the Hamiltonian do not commute in general, this implies a trade-off between the number of gate
operations and the accuracy with which the state |k(C + X)〉 can be obtained at the end of a single
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Trotter step. There is a similar trade-off when we consider that the Suzuki–Trotter decomposition
also introduces errors dependent on X and on the ordering of gate operations within the circuit. A
simple evolution step such as that considered in Ref. [14] reduces gate counts at the cost of larger
errors, while more complicated evolution steps can reduce errors at the cost of (typically significant)
increases in the number of gate operations. In Section 4 we discuss gate costs for a single Trotter
step for SQM with various superpotentials.

The VQE is a hybrid quantum–classical algorithm that finds the lowest eigenvalue of a ma-
trix [15]. When the matrix in question is a Hamiltonian, this provides an approximation to the
ground state as the corresponding eigenvector. The algorithm functions similarly to the variational
method. First a trial wave function k for the ground state is created which is defined with tunable
parameters \8 . A quantum circuit is used to compute the energy of the parameterized wave func-
tion, whose parameters are optimized via classical methods to minimize this energy. Eventually the
algorithm will converge to a value �var that is an upper bound for the ground-state energy,

�0 ≤ �var =
〈k(\8) |� | k(\8)〉
〈k(\8) |k(\8)〉

. (15)

In this work we report on simulations of VQE analyses using classical computing rather than
actual quantum hardware. This leaves the performance of the VQE dependent on the choice of
trial wave function and classical optimizer. For the trial wave function we use the 'H variational
form [13], which only involves H rotations and CX gates. For the classical optimizer we use
COBYLA which was shown to work well in Ref. [11]. In the next section we present results for
different superpotentials and cutoffs. Given that the VQE provides only an upper bound on the
ground-state energy, we perform 100 runs for each computation and quote the minimum result as
the best approximation to the ground state.

4. VQE analyses for various superpotentials
Here we discuss the current status of our studies of SQM with three different superpotentials,

for a range of cutoffs Λ. For each superpotential we start by looking at the eigenvalues of the
Hamiltonian via exact diagonalization. Then we compare these exact values to the best result
obtained from 100 runs of the VQE. Lastly we discuss the cost of attempting to study the real-time
dynamics of such systems in terms of their entangling gate counts.

4.1 Harmonic Oscillator
The supersymmetric harmonic oscillator (HO) is specified by the superpotential

, (@̂) = 1
2
<@̂2, (16)

where< is themass of the boson and fermion. This is one of the simplest superpotentials to consider
since , ′′(@̂) = < and the bosons and fermions do not interact. No dynamical supersymmetry
breaking is expected for this superpotential [7]. The energy spectrum as a function of the cutoff
determined via exact diagonalization is plotted in Fig. 1. To preserve supersymmetry the ground
state-energy must vanish, and for any cutoff the value is exactly zero. In fact, for this superpotential
the only cutoff effect seems to be the lack of excited states; the energies of all accessible states
are exact even for small cutoffs. The results of the VQE for representative cutoffs up to Λ ≤ 32
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Table 1: Minimum energy from 100 runs of the VQE for various supersymmetric superpotentials (with
< = 6 = ` = 1). The harmonic and anharmonic oscillator are expected to preserve supersymmetry and have
a ground state energy of zero. The double well breaks supersymmetry and should have a non-zero ground
state energy. The exact value represents the minimum energy from classical diagonalization.

Λ Exact VQE
2 0.00e+00 5.34e-10
4 0.00e+00 1.07e-09
8 0.00e+00 4.06e-09
16 0.00e+00 1.13e-08
32 0.00e+00 4.81e-08

(a) Harmonic oscillator.

Λ Exact VQE
2 9.38e-01 9.38e-01
4 1.27e-01 1.27e-01
8 2.93e-02 2.93e-02
16 1.83e-03 6.02e-02
32 1.83e-05 6.63e-01

(b) Anharmonic oscillator.

Λ Exact VQE
2 1.08e+00 1.08e+00
4 9.15e-01 9.15e-01
8 8.93e-01 8.93e-01
16 8.92e-01 8.94e-01
32 8.92e-01 8.95e-01

(c) Double well.
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Figure 1: Spectra for different cutoffs of the bosonic degrees of freedom, for the harmonic oscillator (left)
and anharmonic oscillator (right) superpotentials (with < = 6 = 1). For eachΛ there are 2Λ states which are
differentiated by color. For the harmonic oscillator, and the large-cutoff limit of the anharmonic oscillator,
all levels except the ground state and highest-energy state are two-fold degenerate.

are given in Table 1. For this simple superpotential the VQE clearly converges to zero energy,
confirming that a sufficiently low-noise quantum simulation would come to the correct conclusion
about supersymmetry breaking. For simulating the real-time evolution of this system, the entangling
(CX) gate counts are given by the green circles in Fig. 4. Notably, if the number of oscillator modes
is set to a power of two, Λ = 2=, no CX gates are required to evolve the system in time. This makes
the HO superpotential a promising benchmark for even today’s quantum devices.

4.2 Anharmonic Oscillator
The supersymmetric anharmonic oscillator (AHO) is given by the superpotential

, (@̂) = 1
2
<@̂2 + 1

4
6@̂4, (17)

where< is the mass of the boson and the coefficient 6 dictates the strength of the interaction between
the boson and fermion. For any value of 6 the AHO is also expected to preserve supersymmetry [7].
In Fig. 1we plot the low-lying energy spectrumas a function of the cutoff using exact diagonalization.
Here we see more significant errors induced by the cutoff, but as Λ increases the low-lying energies
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Figure 2: Semi-log plot of the ground-state energy of the anharmonic oscillator (with < = 6 = 1) as a
function of the cutoff. As the cutoff increases this energy exponentially approaches zero signifying that
supersymmetry is preserved in this model.

rapidly converge. In Fig. 2 we plot the ground-state energy on a semi-log scale to show that it
is approaching zero exponentially quickly as Λ increases, which confirms that supersymmetry is
preserved for this superpotential. The results for the VQE in Table 1 show that it becomes difficult
to find the expected ground-state energy for larger cutoffs (Λ > 16). This could be due to the fact
that our wave function is not expressive enough, and we are currently exploring a greater variety of
parameterizations. The entangling gate count for a Trotter step is shown by the yellow crosses in
Fig. 4. Here we can see a dramatic increase in CX gates as a function of the cutoff compared with
the HO superpotential. There is still a significant decrease in the number of entangling gates when
Λ = 2=, although it is always non-zero. This system will be very interesting to analyze using future
NISQ hardware with improved error rates.

4.3 Double Well
The supersymmetric double well (DW) is defined by the superpotential

, (@̂) = 1
2
<@̂2 + 6(1

3
@̂3 + @̂`2), (18)

where < is the mass while the coefficients 6 and ` control the strength of interactions between the
boson and fermion. For non-zero values of 6 and `, this system is expected to exhibit dynamical
supersymmetry breaking [7]. In Fig. 3 we plot the spectrum from exact diagonalization as a function
of the cutoff. Similarly to the AHO, cutoff effects are non-negligible for very small values of Λ. As
the large-cutoff limit is taken the ground-state energy clearly does not converge to zero, confirming
that supersymmetry is dynamically broken. The VQE results in Table 1 successfully reproduce this
non-zero ground-state energy. The entangling gate count in Fig. 4 scales in a comparable way to
the AHO superpotential, with significant cost reductions for cutoffs equal to a power of two.

5. Summary
We have presented first results from our work using quantum computing to study super-

symmetric quantum mechanics in 0 + 1 dimensions. As a measure of supersymmetry breaking
we compute the ground-state energy using both classical exact diagonalization and the hybrid

7
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Figure 3: Similar to Fig. 1 but for the double-well superpotential (with < = 6 = ` = 1). As the large-
cutoff limit is taken two-fold degeneracy is again recovered—now also for the ground-state energy, which is
non-zero due to spontaneous supersymmetry breaking.
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Figure 4: Number of entangling CX gates in a single Trotter step, as a function of the cutoff for the
three superpotentials (with < = 6 = ` = 1) considered so far: the harmonic oscillator (green circles), the
anharmonic oscillator (yellow crosses), and the double well (blue stars). When the cutoff is equal to a power
of two (Λ = 2=) there are significant reductions in the number of CX gates required. In particular, this
produces zero CX gates for the harmonic oscillator, which isn’t visible on this semi-log plot.

quantum–classical VQE. Both methods confirm that supersymmetry is preserved for the harmonic
oscillator and spontaneously broken for the double-well superpotential. For the anharmonic oscil-
lator exact diagonalization confirms the expected preservation of supersymmetry, while the VQE
has difficulties that we are currently investigating by exploring whether different trial wave func-
tions or classical optimizers can improve its performance. Lastly we discussed the entangling gate
counts for a single Trotter step for each of the three superpotentials, to illustrate why we consider
supersymmetric quantum mechanics a promising target for quantum computing in the NISQ era.

Acknowledgments: We thank Yannick Meurice and Hank Lamm for encouraging discussions.
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