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We present a new formalism for numerically treating the semiclassical gravitational collapse of a
scalar quantum field in the radially symmetric case. Our formalism is time reversal invariant and
the evolution of the scalar fields is unitary. We present some first results in the angular momentum
𝑙 = 0 approximation for an initially coherent state of a massless field and briefly discuss future
prospects.
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Real time dynamics of a semiclassical gravitational collapse of a scalar quantum fieldChristian Hoelbling

1. Introduction

The formation of black holes via gravitational collapse and their subsequent evaporation via
Hawking radiation [1] is a process whose dynamics is not yet satisfactorily understood. Specifically,
it is not clear whether it can be described by a unitary time evolution or there is an inherent loss of
information (see e.g. [2, 3] for recent reviews on this topic). In this note, we describe a formalism
whose ultimate aim it is to provide some insight into this question numerically, in a simple,
semiclassical setup. We investigate a massless, scalar quantum field, coupled semiclassically to
classical gravity via a dynamical metric, but otherwise free. For simplicity, our setup is spherically
symmetric and the background metric is assumed to be flat and without singularities in the absence
of the field. Our aim is to compute the real time evolution of the scalar field and the associated
metric, starting from an inmoving, coherent state. We show that, in principle, the time evolution
of the system can be carried out numerically and present some results in the 𝑙 = 0 approximation.
Finally, we briefly touch upon issues of vacuum subtraction of the higher angular momentum modes.
More detailed results for the 𝑙 = 0 approximation can be found in [4] and a different formalism for
treating this problem is presented in [5, 6].

2. Derivation of the formalism

We work with the spherically symmetric metric [7–10]

d𝜏2 = 𝛼2(𝑡, 𝑟)d𝑡2 − 𝑎2(𝑡, 𝑟)d𝑟2 − 𝑟2dΩ2

and the action

𝑆± =

∫
d4𝑥

©­«
𝑁 𝑓∑︁
𝑖=1

(−1)𝑃𝑖
2

(
𝑔𝛼𝛽 (𝑥)𝜙 (𝑖) †

,𝛼 (𝑥)𝜙
(𝑖) (𝑥),𝛽 − 𝑀2

𝑖 𝜙
(𝑖) †(𝑥)𝜙 (𝑖) (𝑥)

)
− 1

16𝜋
𝑅(𝑡, 𝑟)ª®¬

which allows us to in principle include fields of different masses 𝑀𝑖 . Any number of these fields
can be Pauli-Villars regulators (as suggested in [5, 6]) if we chose 𝑃𝑖 = 1 (otherwise 𝑃𝑖 = 0). We
decompose our scalar fields into spherical harmonics

𝜙(𝑡, 𝑟, 𝜃, 𝜑) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝜙𝑙𝑚(𝑡, 𝑟)𝑌𝑙𝑚(𝜃, 𝜑)

and rescale them as
𝜙𝑙𝑚 = 𝜙𝑙𝑚𝑟

√︂
𝑎0

2𝛼0

where 𝑎0 and 𝛼0 are the metric parameters at the initial time 𝑡0. This results in a Hamiltonian
density that is diagonal in the scalar field components

H (𝑖)
𝑙𝑚

= Π
(𝑖)
𝑙𝑚
𝐴Π

(𝑖)
𝑙𝑚

†
+𝜙 (𝑖) †

𝑙𝑚𝐴
− 1

2𝐾
(𝑖)
𝑙
𝜙
(𝑖)
𝑙𝑚

where the real, symmetric operators 𝐾 (𝑖)
𝑙

are given by

𝐾
(𝑖)
𝑙

= 𝑞𝑇 𝑞 + 𝛼2
(
𝑙 (𝑙 + 1)
𝑟2 + 𝑀2

)
𝑞 = 𝑟

√︂
𝛼

𝑎
𝜕𝑟

1
𝑟

√︂
𝛼

𝑎
(1)
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and
𝐴 =

𝑎0𝛼

𝛼0𝑎

Note that at the initial time 𝑡0 the factor 𝐴 = 1. We proceed by canonical quantization of the fields
𝜙
(𝑖)
𝑙𝑚

. Parameterising our fields in the initial time Fock basis with annihilation operators 𝑏 (𝑖)
𝑙𝑚±, we

can define time evolution coefficient matrices 𝑢 (𝑖)
𝑙

(𝑡) and 𝑣 (𝑖)
𝑙

(𝑡) via

𝜙
(𝑖)
𝑙𝑚

=
𝑢
(𝑖)
𝑙

†
(𝑡)𝑏 (𝑖)

𝑙𝑚+
†
+ 𝑢 (𝑖)𝑇

𝑙
(𝑡)𝑏 (𝑖)

𝑙𝑚−√
2

Π
(𝑖)
𝑙𝑚

=
𝑏
(𝑖)
𝑙𝑚+𝑣

(𝑖)
𝑙

(𝑡)−𝑏 (𝑖)
𝑙𝑚−

†
𝑣
(𝑖)∗
𝑙

(𝑡)
√

2

Diagonalizing the Hamiltonian at the initial time 𝑡0 via

𝐾
(𝑖)
𝑙

= 𝑉
(𝑖)
𝑙
𝜔

(𝑖)2
𝑙
𝑉

(𝑖)𝑇
𝑙

(2)

we find the initial condition for the evolution coefficients to be

𝑢
(𝑖)
𝑙

(𝑡0) =
1√︃
𝜔

(𝑖)
𝑙

𝑉
(𝑖)𝑇
𝑙

𝑣
(𝑖)
𝑙

(𝑡0) =
√︃
𝜔

(𝑖)
𝑙
𝑉

(𝑖)𝑇
𝑙

(3)

and their Heisenberg picture time evolution given by

¤𝑢 (𝑖)
𝑙

= −𝑖𝑣 (𝑖)
𝑙
𝐴 ¤𝑣 (𝑖)

𝑙
= −𝑖𝑢 (𝑖)

𝑙
𝐴− 1

2𝐾
(𝑖)
𝑙
𝐴− 1

2 (4)

Note that for a fixed metric, this time evolution is a Bogolyubov transformation and thus fulfills the
identities

Re
(
𝑢
(𝑖)
𝑙

†
𝑣
(𝑖)
𝑙

)
= Re

(
𝑣
(𝑖)
𝑙

†
𝑢
(𝑖)
𝑙

)
= 1 Im

(
𝑢
(𝑖)
𝑙

†
𝑢
(𝑖)
𝑙

)
= Im

(
𝑣
(𝑖)
𝑙

†
𝑣
(𝑖)
𝑙

)
= 0

With the Heisenberg time evolution settled, we next need to define an initial state. For this purpose,
we first define an annihilation operator

𝑏 = 𝑏
(0)
00+𝑘 𝑓+𝑘 + 𝑏

(0)
00−𝑘 𝑓

∗
−𝑘

where 𝑘 is an explicit momentum index which is summed over. Note that we only use 𝑙 = 0
operators to maintain radial symmetry. Also note, that the operator 𝑏 only excites a single field
𝑖 = 0. We use this annihilation operator to produce an initially coherent state of unit norm

|𝜆〉 = 𝑒−
|𝜆|2

2

∞∑︁
𝑛=0

𝜆𝑛

𝑛!
𝑏†
𝑛 |0〉

The coefficients 𝑓±𝑘 encode the radial shape of our state. Using the shorthand notation

𝑙+ = 𝜆∗ 𝑓+ 𝑙− = 𝜆 𝑓−

and
𝑙𝑢 = 𝑢

(0)
0

†
𝑙+ − 𝑢 (0)0

𝑇
𝑙−

𝑙𝑣 = −𝑖(𝑣 (0)0
†
𝑙+ + 𝑣 (0)0

𝑇
𝑙−)

3
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we can take the expectation values of the elements of the energy momentum tensor in these states
and write down the field equations. After some algebra this results in

ln′(𝑎𝛼) = ℎ𝑟(
ln′ ( 𝑎

𝛼

)
− 1−𝑎2

𝑟

)
1
𝑎2 = 𝑚𝑟

¤𝑎
𝛼

= 𝑝𝑟

(5)

where the densities and 𝑝𝑟 at the radial coordinate 𝑟 are given as

ℎ𝑟 = 𝑎0

𝑟 𝛼0 ( | (𝑞0𝑙𝑢)𝑟 |2 + |𝑙𝑣𝑟 |2) + ℎ0
𝑟

ℎ0
𝑟 = 𝑎0

𝑟 𝛼0

(∑
𝑖 (−1)𝑃𝑖 ∑∞

𝑙=0(2𝑙 + 1)
((
𝑣
(𝑖)
𝑙

†
𝑣
(𝑖)
𝑙

)
𝑟𝑟

+
(
𝑞0𝑢

(𝑖)
𝑙

†
𝑢
(𝑖)
𝑙
𝑞0𝑇

)
𝑟𝑟

))
𝑚𝑟 =

𝛼0
𝑟𝑎0

∑
𝑖 (−1)𝑃𝑖 ∑∞

𝑙=0(2𝑙 + 1)
(
𝑙 (𝑙+1)
𝑟2 + 𝑀2

𝑖

) (
𝑢
(𝑖)
𝑙

†
𝑢
(𝑖)
𝑙

)
𝑟𝑟

𝑝𝑟 =
𝑎0
𝑟 𝛼0

(
Im(𝑙𝑣𝑟 (𝑞0𝑙𝑢)𝑟 ) +

∑
𝑖 (−1)𝑃𝑖 ∑∞

𝑙=0(2𝑙 + 1) Im
(
𝑞0𝑢

(𝑖)
𝑙

†
𝑣
(𝑖)
𝑙

)
𝑟𝑟

)
(6)

with the operator

𝑞0 = 𝑞(𝑡0) = 𝑟
√︂
𝛼0
𝑎0
𝜕𝑟

1
𝑟

√︂
𝛼0
𝑎0

Note that none of the right hand sides in (6) contain a reference to the current metric, which allows
for a convenient radial integration of the first two equations in (5). In fact, defining

𝛼̂ = 𝛼𝑎 𝑑 =
𝑟

𝑎2

they decouple and can be written as

ln′(𝛼̂) = ℎ𝑟

𝑑 ′ + 𝑑ℎ𝑟 = 1 − 𝑟𝑚𝑟

3. Discretization and regularization

We discretize our system with 𝑁𝑟 radial shells of equal coordinate distance Δ = 𝑟𝑖 − 𝑟𝑖−1 (more
general discretizations might be considered). One step beyond the innermost shell, we have the
boundary condition 𝑑0 = 0, which implies that for 𝑟0 = 0 there is no central singularity. The case
𝑟0 > 0, corresponding to a horizon at 𝑟0, is not considered here. Outside the outermost shell, we
assume a Schwarzschild metric, so our second radial boundary condition is 𝛼̂𝑁𝑟

= 1. Assuming
that the densities ℎ𝑟 and 𝑚𝑟 are concentrated in 𝛿-shells at the radial coordinates, we find that radial
integration can be accomplished by

𝛼̂𝑖 = 𝑒
−∑𝑁𝑟

𝑗=𝑖+1 ℎ 𝑗

𝑑𝑖 = 𝑒−ℎ
0
𝑖 (𝑑𝑖−1 + Δ) + 𝑒

−ℎ0
𝑖 −1
ℎ0
𝑖

𝑚𝑖𝑟𝑖
(7)

4
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It is clear however, that we can not use the densities ℎ𝑟 and 𝑚𝑟 as given in (6), since they contain
divergent vacuum contributions.1 A first step towards regularization, which turns out to be sufficient
in the 𝑙 = 0 approximation, is the normal ordering of the operators. In the simplest case, to which
we will restrict our attention here, the normal ordering is performed once at the initial time 𝑡0 with
no further corrections, resulting in

: ℎ0
𝑟 : (𝑡) = ℎ0

𝑟 (𝑡) − ℎ0
𝑟 (𝑡0) : 𝑚𝑟 : (𝑡) = 𝑚𝑟 (𝑡) − 𝑚𝑟 (𝑡0)

We also need to discretize the derivative operator 𝑞 in (1), which we will do here with the simple
forward difference operator and an inner and outer shell truncation, corresponding to reflecting
boundary conditions. For more generic choices on all of the above, we refer to [4], where different
variations are worked out in detail for the 𝑙 = 0 approximation. For the temporal evolution of the
field component matrix, we adopt a time reversible integration scheme that respects the Bogolyubov
identities. This is achieved by alternating between an implicit and explicit time step(

𝑢
(𝑖)
𝑙,𝑡+Δ𝑡 𝑣

(𝑖)
𝑙,𝑡+Δ𝑡

)
=

(
𝑢
(𝑖)
𝑙,𝑡

𝑣
(𝑖)
𝑙,𝑡

)
𝑒
−𝑖

(
0 1√

𝐴
𝐾

(𝑖)
𝑙

1√
𝐴

𝐴 0

)
Δ𝑡

which results from a straightforward integration of (4). For the numerical implementation, we
perform a diagonalization (2) of the operator 𝐾 (𝑖)

𝑙
from (1), which (leaving out the obvious indices

𝑙 and (𝑖) for compactness) results in

𝑢𝑡+Δ𝑡 =

(
𝑢𝑡

1√
𝐴
𝑉 cos(𝜔Δ𝑡) − 𝑖𝑣𝑡

√
𝐴𝑉 1

𝜔
sin(𝜔Δ𝑡)

)
𝑉𝑇

√
𝐴

𝑣𝑡+Δ𝑡 =

(
𝑣𝑡
√
𝐴𝑉 cos(𝜔Δ𝑡) − 𝑖𝑢𝑡 1√

𝐴
𝑉𝜔 sin(𝜔Δ𝑡)

)
𝑉𝑇 1√

𝐴

(8)

In the implicit step, we iterate between the update (8) and a radial integration of the metric (7). The
necessary diagonalizations in this step make up the bulk of the computational expense.

Finally, we want to specify our choice for the initial wave packet. It turns out to be advantageous
to take a window function, which vanishes identically outside a specified range. In the results
presented, we opt for a Nuttall window [11]

𝑓𝑅,𝜎,𝜆(𝑟) = 𝜆
( 3∑︁
𝑘=0

𝑎𝑘 cos
(
𝑘
𝜋(𝑟 − 𝑅 + 𝜎)

𝜎

))2

with the coefficients

𝑎1 = −0.487396 𝑎2 = 0.144232 𝑎3 = −0.012604 𝑎0 = −𝑎1 − 𝑎2 − 𝑎3

and an amplitude 𝜆, which is peaked at 𝑅 and vanishes for |𝑅−𝑟 | > 𝜎. The metric is then initialized
by setting

ℎ𝑖 = 𝑓𝑅,𝜎,𝜆(𝑟𝑖) 𝑚𝑖 = 0

and performing a radial integration (7). To initialize the state, we then chose an inmoving wave
packet 𝜅𝑖 = 1 and set

𝑙𝑢𝑖 = sign(𝜅𝑖)

√︄
ℎ𝑖

(
1 ∓

√︃
1 − 𝜅2

𝑖

)
𝑙𝑣𝑖 =

√︄
ℎ𝑖

(
1 ±

√︃
1 − 𝜅2

𝑖

)
1Note however, that the vacuum contributions of 𝑝𝑟 vanish at the initial time 𝑡0. Although this is not pursued here, it

might help in finding an alternative integration scheme that requires less regularization.
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We then compute the initial 𝐾 (𝑖)
𝑙

according to (1) and perform their eigenmode decomposition (2),
which allows us to construct the initial evolution coefficient matrices (3), so we can finally initialize
the state vector components as

𝑙± =
1

2𝜔 (0)
0

(±𝑢 (0)0 𝑞0𝑇 𝑙𝑢 + 𝑖𝑣 (0)0 𝑙𝑣 )

4. Some results in the 𝑙 = 0 approximation

For a first test of our formalism, we restrict ourselves to the 𝑙 = 0 approximation. In that
case, we do not require any further regularization beyond the normal ordering. In order to make
the vacuum effects more prominent, we choose to study two massless fields 𝑁 𝑓 = 2 with only the
first one carrying a classical component. The results presented here correspond to our standard
discretization with 𝑁𝑟 = 800 radial discretization points and a radial extent from 𝑟0 = 0 to 𝑟max = 10,
a time step Δ𝑡 = 0.004, an exterior Schwarzschild metric with a total 𝑟𝑠 = 3.5 and an inital bump
with a width 𝜎 = 0.5 around 𝑅 = 9. The initial state at 𝑡 = 0 is depicted in fig. 1.

Figure 1: The initial normal ordered Hamiltonian density ℎ = 𝛼
2𝑎 ℎ𝑟 and the ratio of the local Schwarzschild

radius 𝑟𝑠 = 𝑟 − 𝑑 to the local radius.

Performing the time evolution of our system in both the classical and the semiclassical cases,
we observe the onset of horizon formation (see fig. 2), which seems to happen at larger radial
coordinates in the semiclassical case.

In order to highlight the difference between the classical and semiclassical cases in the 𝑙 = 0
approximation, we can plot the vacuum terms alone. We can in fact do this for the classical case,
where we can measure the vacuum term even though it does not contribute to the time evolution. In
fig. 3 we have plotted the corresponding terms, providing evidence that within our approximation
the vacuum in both the semiclassical and the classical time evolution tend to enhance the peak
energy density.

In fig. 4, we zoom in on the vacuum contribution of the semiclassical time evolution at
𝑡 = 12. In addition to the vacuum term with respect to the initial metric, we have also plotted the
vacuum term with respect to the current metric in the time evolution. The latter is obtained by
not subtracting ℎ0(𝑡), but instead by computing a new ℎ0(𝑡0) according to (6) with the evolution
coefficients reinitialised at 𝑡0 = 𝑡 as in (3). One can see, that with respect to the initial state metric,
the vacuum term enhances the peak region while depressing both outer and inner flanks, whereas
with respect to the current state metric, the vacuum contribution is negative inside the peak region
and positive just outside.

6
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Figure 2: Time evolution of the state from fig. 1.

5. Conclusions and outlook

We are investigating the semiclassical gravitational collapse of a massless scalar field. While the
formalism seems to work in principle and yields interesting first results in the 𝑙 = 0 approximation,
there still is a lot of conceptual work to be done. Most importantly, we want to go beyond the
𝑙 = 0 approximation, which requires additional regularization. We are currently in the process
of investigating different approaches, including static mode subtraction, point splitting and the
introduction of Pauli-Villars fields as suggested in [5, 6]. There are also a number of technical
challenges, such as instabilities in the eigenmode decomposition near the origin or the proper
treatment of high frequency modes close to a forming horizon, which have to be overcome before
more physical conclusions about the behaviour of the system can be drawn.
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