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Two important sources of systematic errors in lattice QCD calculations of radiative leptonic decays
are unwanted exponentials in the sum over intermediate states and unwanted excited states created
by the meson interpolating field. Performing the calculation using a 3d sequential propagator
allows for better control over the systematic uncertainties from intermediate states, while using a
4d sequential propagator allows for better control over the systematic uncertainties from excited
states. We calculate form factors using both methods and compare how reliably each controls
these systematic errors. We also employ a hybrid approach involving global fits to data from both
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1. Introduction

Radiative leptonic decays have been gaining interest in recent years [1–19]. One important
part of understanding these decay processes is a first principles calculation of the relevant hadronic
form factors using lattice QCD. The calculation of the form factors requires calculating a non-local
matrix element, that, on the lattice, can be calculated using two different methods, which we call
the 3d-method and the 4d-method (see section 4). At Lattice 2019 [20], we presented calculations
using the 3d-method in the rest frame of the initial-state pseudoscalar meson and fit the data to a
constant where it had plateaued. Since then, a lattice calculation of radiative leptonic decays was
published in [21], where the authors use what we call the 4d-method. In their analysis, they fit the
data to constants where it had plateaued.

In the following, we give an update on our work. To explore a wider range of photon energies,
we performed new calculations using the 3d-method in the moving frame of the pseudoscalar and
found that for some data fitting to a constant is not possible, and more complicated fits have to
be implemented to remove unwanted exponentials. The focus of this work is to determine which
method results in the best control of systematic uncertainties from these unwanted exponentials
with the smallest statistical uncertainties. We present fit results for both 3d and 4d method data, as
well as a hybrid approach where we perform global fits to both sets of data.

2. Hadronic tensor and form factors

The Minkowski space hadronic tensor for the decay process � → Wℓa, where � is a pseu-
doscalar meson, is defined as

)`a = −8
∫

d4G 48 ?W ·G 〈0| T
(
�em` (G)�weaka (0)

) ��� (®p� )〉 . (1)

The electromagnetic current and weak current are given by �em` =
∑
@ &@ @̄W`@ and �weaka =

@̄1Wa (1 − W5)@2. For real photons, i.e. ?2
W = 0, which we focus on in this work, the hadronic tensor

can be decomposed as [7]

)`a = n`agd?
g
WE
d�+ + 8

[
− 6`a (E · ?W) + E` (?W)a

]
�� − 8

E`Ea

(E · ?W)
<� 5� + (?W)`-terms, (2)

where ?`
�
= <� E

`. The (?W)`-terms are proportional to the photon momentum and are zero when
contracted with the photon polarization vector. The vector form factor �+ and axial form factor
�� are functions of the photon energy as seen in the rest frame of the pseudoscalar meson, given
by � (0)W = E · ?W . We define GW = 2� (0)W /<� , which, for physically allowed values of � (0)W , takes
on values 0 < GW ≤ 1. The axial form factor is composed of a point-like contribution, where the
photon does not probe the internal structure of the initial state pseudoscalar meson, and a structure-
dependent contribution. The point-like contribution is given by (−&ℓ 5�

�
(0)
W

) where &ℓ is the charge
of the lepton in the final state, and 5� is the pseudoscalar decay constant. The structure-dependent
part of the axial form factor is given by ��,(� = �� − (−&ℓ 5�

�
(0)
W

). At large photon energies, the
decay amplitude depends only on �+ and ��,(� [7].

In the next section, we show how to extract the hadronic tensor using a Euclidean three-point
function. To do so, we need to look at the spectral decomposition for both the C4< < 0 and
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C4< > 0 time orderings of )`a . After inserting a complete set of energy/momentum eigenstates and
performing time integrals we find

)<`a = −8
∫ 0

−∞(1−8 n )
3C4<

∫
33G 4−8 ?W ·G 〈0| �weaka (0)�em` (C4<, ®x)

��� (®p� )〉
= −

∑
=

〈0| �weaka (0)
��=(®p� − ®pW)〉 〈

=(®p� − ®pW)
�� �em` (0) ��� (®p� )〉

2�=,®p�−®pW (�W + �=,®p�−®pW − ��,®p� − 8n)
,

(3)

and

)>`a = −8
∫ ∞(1−8 n )

0
3C4<

∫
33G 4−8 ?W ·G 〈0| �em` (C4<, ®x)�weaka (0)

��� (®p� )〉
= −

∑
<

〈0| �em` (0)
��<(®pW)〉 〈

<(®pW)
�� �weaka (0)

��� (®p� )〉
2�<,®pW (�W − �<,®pW − 8n)

,

(4)

where in infinite volume, the sums over = and < include integrals over the continuous spectrum of
multi-particle states.

3. Extracting the hadronic tensor from a Euclidean three-point function

The Euclidean-time three-point function we will use to extract )`a is given by

�3,`a (C4<, C� ) =
∫

33G

∫
33H 4−8®pW ·®x48®p� ·®y〈�em` (C4<, ®x)�weaka (0)q†

�
(C� , ®y)〉, (5)

where q†
�
= −@̄2W5@1 is our meson interpolating field. We omit the momentum arguments for

brevity. Additionally, we define the time-integrated correlation functions for each time ordering,

�<`a (C� , )) =
∫ 0

−)
3C4<4

�W C4<�3,`a (C4<, C� ), �>`a (C� , )) =
∫ )

0
3C4<4

�W C4<�3,`a (C4<, C� ), (6)

for a finite integration range ) . Inserting complete sets of energy/momentum eigenstates in our
three-point correlation function and performing the Euclidean time integrals we find,

�<`a (C� , )) =
∑
;,=

〈0| �weaka (0)
��=(®p� − ®pW)〉 〈

=(®p� − ®pW)
�� �em` (0) ��; (®p� )〉 〈

; (®p� )
�� q†
�
(0) |0〉

2�=,®p�−®pW2�;,®p� (�W + �=,®p�−®pW − �;,®p� )

× 4�;,®p� C�
[
1 − 4−(�W−�;,®p� +�=,®p�−®pW ))

]
,

(7)

�>`a (C� , )) =
∑
;,<

〈0| �em` (0)
��<(®pW)〉 〈

<(®pW)
�� �weaka (0)

��; (®p� )〉 〈
; (®p� )

�� q†
�
(0) |0〉

2�<,®pW2�;,®p� (�W − �<,®pW )

× 4�;,®p� C�
[
4
(�W−�<,®pW )) − 1

]
.

(8)

Taking the limit C� → −∞ removes excited state contamination from the interpolating field q†
�
.

We see that the time-integrated correlation function contains the sum over all desired intermediate
states, but because of the finite integration range ) , each state comes with an unwanted exponential.
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In [20] we argued that as long as |®pW | > 0, the unwanted exponentials for both time orderings decay
as we increase the integration range ) and thus we have the final relation

)`a = − lim
)→∞

lim
C�→−∞

2�� (®p� )4−�� (®p� )C�〈
� (®p� )

�� q†
�
(0) |0〉

�`a (C� , )), (9)

where �`a (C� , )) = �<`a (C� , )) + �>`a (C� , )). It will be useful for our discussion in section 6 to
introduce the notation �`a (C� , )) = ��`a (C� , )) + �+`a (C� , )), where ��`a (C� , )) and �+`a (C� , )) are
the weak axial-vector and vector current components of �`a (C� , )), respectively.

4. Sequential propagators

We consider two different methods of calculating �`a (C� , )) on the lattice, which are depicted
in figure 1. The first, which we call the 3d method, uses a 3d (timeslice) sequential propagator
through the interpolating field. Using the 3d method, for a fixed value of C� we calculate the
three-point correlation function in equation (5) and get all values of C4< for free. The time integral
over C4< is performed offline in the analysis stage. The other method, which we call the 4d method,
uses a 4d sequential propagator through the EM current which is not fixed to a single timeslice. The
key difference is that using the 4d method, for a fixed value of integration range ) , the time integral
over C4< is performed directly on the lattice, such that we get all values of C� for free. We see that
the 3d method is particularly suited to control unwanted exponentials from finite integration range
) , while the 4d method is particularly suited to control unwanted exponentials from excited states
created by the interpolating field. In [20], we used the 3d method and performed fits to a constant
where the data plateaued in C� and ) . The results in [21] were calculated using the 4d method and
integrated over the entire time extent of the lattice, i.e. ) = #) /2.

In this work, we performed calculations using the 3d method for multiple values of C� and the
4d method for multiple values of ) .

time

noise source

seq. prop

seq. source

time

noise source

seq. prop

seq. source

Figure 1: The left (right) figure is a schematic drawing of the 3d (4d) methods. For both methods, the initial
noise source is located at the weak current time. The sequential propagator is shown in green (orange) and
the sequential source is circled in green (orange).

5. Lattice parameters

We perform calculations on two RBC/UKQCD ensembles, namely the “24I” ensemble [22]
and a 323×64 ensemble with identical properties as the “24I”, but with a larger spatial volume. Both
ensembles were generated using the Iwasaki gauge action, 2+1 flavors of domain-wall fermions
with #5 = 16 sites in the fifth dimension, V = 2.13, 0<D,3 = 0.005, 0<sea

B = 0.04, and have
0−1 = 1.785(5) GeV. For the light and strange quarks we use the same domain-wall action as the
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sea quarks in [22], except that for the strange quark we use the physical mass of 0<val
B = 0.0323

rather than the sea mass. We implement the valence charm quark using a Möbius domain-wall
action with stout-smeared gauge links (N=3, d = 0.1), !5/0 = 12, 0"5 = 1.0, 0< 5 = 0.6 [23],
which approximately corresponds to the physical charm-quark mass. Disconnected diagrams are
currently neglected. In our calculation, we use all-mode averaging [24] with 1 exact and 16 sloppy
samples per configuration, where the sloppy samples correspond to 16 different starting time slices
for the noise source. We also use local currents with “mostly non-perturbative” renormalization. For
all 3d-method data we performed calculations for three values of source-sink separation −C�/0 =
{6, 9, 12}. For all 4d-method data we performed calculations for three values of integration range
)/0 = {6, 9, 12}. Further details of the calculation are shown in Table 1.

Meson #3
B × #C #cfg Method

 323 × 64 20 3d ? ,I = 2c/!{1, 2} ?W,I = 2c/!{1}
 323 × 64 20 4d ? ,I = 2c/!{1, 2} ?W,I = 2c/!{1}
�B 243 × 64 25 3d |®p�B | = 0 |®pW |2 = (2c/!)2{1, 2, 3, 4}
�B 243 × 64 25 4d ?�B ,I = 2c/!{−1, 0, 1, 2} ?W,I = (2c/!){1}

Table 1: The number of configurations, methods, and momenta for which we performed calculations. When
only the z-component of the momentum is listed, the other momentum components are zero.

6. Fit Method

In this section we describe our fit method used to remove unwanted exponentials from the
form factors. We begin by considering, in continuum QCD, the quantum numbers of the states that
contribute to the sum over states in the spectral decompositions of �<`a (C� , )) and �>`a (C� , )). For
C4< < 0, the states must have the same quark-flavor quantum numbers as the initial pseudoscalar me-
son. Additionally, parity constrains the possible �% quantum numbers that contribute. The �% quan-
tum numbers of the states

��=(®p� − ®pW)〉 that contribute to the sum over states in the spectral decom-
position of �<,�`a are �% = {0−, 1+, 2±, . . . } (on the lattice, the states are in irreducible representations
of the associated little group of the cubic group, whichmixes angularmomentumquantumnumbers).
The lowest-energy state with these quantum numbers is the pseudoscalar meson itself. For �<,+`a , the
states

��=(®p� − ®pW)〉 that contribute to the sum over all states have �% = {0+, 1−, 2±, . . . }. The lowest
energy state with these quantum numbers is the vector meson (�∗) associated with our pseudoscalar
meson, e.g. for � =  it would be a ( ∗)-like state. We calculate the energies of both the � and �∗

by fitting the associated two-point function to a single exponential and use the result of the fit as a
Gaussian prior in the form factor fits, where the central value of the fit result is the prior value and the
uncertainty of the fit result is the prior width. We use the continuum relativistic dispersion relation to
calculate energies at non-zero momentum for the  and  ∗ mesons. For the �B and �∗B we calculate
non-zero momentum energies directly from the two-point correlation function projected to definite
momentum. For C4< > 0, the states are flavorless and we leave their energies as fit parameters.
Considering parity, the quantum numbers of the states

��<(®pW)〉 that contribute to the sum over states
in �>,�`a (C� , )) and �>,+`a (C� , )) are �% = {0+, 1−, 2±, . . . } and �% = {1−, 2±, . . . }, respectively.

From this we also learn that, for a given time ordering, the same states contribute to all `, a
components of ��`a (C� , )), and similarly for �+`a (C� , )). So, while the matrix elements multiplying
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the unwanted exponentials will in general be different for different `, a, the energies appearing in the
unwanted exponentials will be the same. Because only ��`a contributes to ��, ��,(� , 5� and only
�+`a contributes to �+ , we can fit the form factors directly without mixing unwanted exponentials.
We choose to fit the form factors instead of �`a for two reasons. First, fitting the form factors requires
fewer total fit parameters which helps stabilize the fits. Second, imagine the scenario where taking
linear combinations of �`a (C� , )) results in cancellations which reveal features in the form factors
that �`a (C� , )) is not sensitive to. If we fit �`a (C� , )) first, these features could be missed by the fit
and propagate as a source of systematic uncertainties to the form factors. Fitting the form factors
directly removes this possibility.

To help constrain the energy gap between the first excited state and ground created by the
interpolating field, Δ� , we first perform two-exponential fits to the pseudoscalar two-point function
and use the fit result for Δ� as a Gaussian prior in the form factor fits. We extract �+ , �� and 5�
from the time-integrated correlation function. Using the extracted values of �� and 5� , we then
calculate the structure dependent axial form factor by ��,(� = �� − (−&; 5�

�
(0)
W

). To take advantage
of the fact that data on a given ensemble will have common energies appearing in the unwanted
exponentials that come with the intermediate states, as well as the excited state energy gap from the
interpolating field, we perform simultaneous fits to all data calculated on a given ensemble.

We are fitting our data as a function of integration range, and so each successive value of )
is directly dependent on smaller values of ) . These large correlations lead to small eigenvalues
in the correlation matrix, making correlated fits to this data unstable. This, combined with the
fact that our global fits have up to O(100) fit parameters, means that performing correlated fits is
not possible. We therefore perform uncorrelated fits and calculate the central values and statistical
uncertainties using jackknife. Before performing the global fits, we first determine stable fit ranges
for each form factor at a given momentum on a given ensemble. The stable fit ranges for the 3d
method are chosen by performing simultaneous fits to all C� while looking for stability in the ) fit
range. For the 4d method we perform simultaneous fits to all values of ) looking for stability in
the C� fit range. The chosen stable fit ranges are then used in the global fits. The fit form for the
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Figure 2: Left: �<
�,(�

calculated using the 3d method as a function of fit range ()min, )max + C )/0. The
red point is the chosen stable fit range and the result of the global fit to all 3d method data. Fit ranges where
−C /0 = 6 has no data points means it was left out of the fit. Right: �� calculated using the 4d method as a
function of fit range (C ,min, C ,max)/0. Both were calculated with ®p = 2c

!
(0, 0, 1), ®pW = 2c

!
(0, 0, 1).

3d method data includes one exponential to account for the unwanted exponential that comes with
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Figure 3: Left: �<
�,(�
(C , )) calculated using the 3d method as a function of ) for three values of C . The

green band is the one sigma fit result for −C /0 = 12 and the vertical dotted lines indicate the fit range. The
red band is the one sigma extrapolated value of �<

�,(�
. Right: ��(C , )) calculated using the 4d method as

a function of C for three values of ) . The vertical dashed lines indicate the fit range, and the green band is
the one sigma fit result for )/0 = 12. The red band is the one sigma fit result for ��. Both were calculated
with ®p = 2c

!
(0, 0, 1), ®pW = 2c

!
(0, 0, 1).

the lowest-energy intermediate state, and one exponential to account for the unwanted exponential
from the lowest energy excited state created by the interpolating field. The fit form for the C4< < 0
and C4< > 0 time orderings for a variable � = �+ , ��,(� , ��, 5� are given by

�< (C� , )) = �< + �<�
(
1 + �<�,exc4Δ� () +C� )

)
4−(�W−��+�

<)) + �<� 4Δ�C� , (10)

�> (C� , )) = �> + �>�
(
1 + �<�,exc4Δ�C�

)
4 (�W−�

>)) + �>� 4Δ�C� . (11)

Notice that for C4< < 0, for finite C� , one must be careful to not integrate all the way back to the
interpolating field, i.e. ) < −C� . For C4< < 0, the stability checks are done by looking at the
minimum fit range and the distance from the interpolating field. For C4< > 0 we only need to look
for stability in the minimum fit range. The 4d data is a sum of both time orderings and the general
fit form would be a sum of those in equations (10) and (11). However, we perform fits to regions
where the data has plateaued in C� , leading to the following fit form

� ()) = � + �<� 4−(�W−��+�
<)) + �>� 4 (�W−�

>)) . (12)

Even though the energy �< is constrained from the two-point correlation function, because we only
have three values of ) , the fits to 4d data are not stable. To stabilize the fits we put a broad Gaussian
prior on the parameter �>. For the Kaon, the prior is centered at the d meson mass with a width of
150 MeV, and for the �B, the prior is centered at the qmeson mass with a width of 200 MeV. Figure
2 shows example Kaon stability fit plots for the 3d and 4d method fits. We find that, in general,
the global fit does not significantly reduce the statistical errors. Figure 3 shows an example of the
global fit function on top of the Kaon data for the 3d and 4d method. Note that all uncertainties in
the plots are purely statistical.

7. Global fit results

The top plots in figure 4 show the  − → ℓ−āW form factors �+ and ��,(� as a function of GW
calculated using 3dmethod data, 4d method data, and a combined analysis to both sets of data. First,
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we notice that the error bars are significantly larger for the 4dmethod fits compared to the 3dmethod
fits. This is likely because the 4d method cannot resolve the sum of the unwanted exponentials of
the separate time orderings. The combined analysis using both 3d and 4d method data allows us to
remove the prior on the �> parameter that was necessary to stabilize the 4d method fits. We still
use the prior on the excited-state energy gap from the two-point function. The combined global fit
has approximately the same or increased statistical uncertainties when compared to the either the
3d or 4d method, which needs to be better understood. The bottom plots in figure 4 show similar
plots but for the �+B → ℓ+aW form factors. The qualitative behavior of the fit results are similar to
the Kaon decay.

Using periodic boundary conditions, it is necessary for our current lattice sizes to perform
the calculation in the moving frame of the Kaon to get physically allowed values of GW . Giving
the pseudoscalar meson momentum increases the statistical noise significantly compared to the
rest-frame calculations. The calculation in [21] was done using twisted boundary conditions, which
has the advantage that small values of GW can be achieved giving less momentum to the meson,
improving statistical precision at small GW . However, in [21], the maximum value of GW obtained
for the �B is ∼ 0.35. Consequently, it was not possible to distinguish the � (0)W dependence of the
form factors between a pole and polynomial form. In contrast, in the rest frame of the �B we obtain
GW up to the maximum allowed value of GW = 1 and as low as GW = 0.5. Using moving frames we
have values as low as GW = 0.3.
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Figure 4: The left (right) column show the global fit results for �+ (��,(�) as a function of GW . The top
(bottom) row shows  − (�+B ) form factors. Different colored points show different combinations of data in
the global fit. Data points at the same GW value have been shifted slightly for clarity.
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8. Conclusion and future plans

We have found that for certain values of GW , the fit results for the form factors do not plateau
as we increase the integration range, and more complicated fits must be performed to remove the
unwanted exponentials from intermediate states. We have calculated �`a (C� , )) using a 3d and
4d sequential propagator, and compared analysis methods using only 3d data, only 4d data, and a
combination of the two. Our comparison shows that the 3d method results in the smallest statistical
uncertainties. However, because we only have 3 value of C� , it is difficult to demonstrate stability
in the C� fit ranges.

Moving forward, we will calculate the different time orderings of �`a (C� , )) separately using
the 4d method, which is expected to reduce the statistical uncertainty from the 4d method fits.
Additionally, we will perform calculations using twisted boundary conditions to reach smaller � (0)W
while giving less overall momentum to the meson. This is particularly important for the Kaon
decay. Once the optimal analysis method has been worked out, we plan to perform calculations on
a variety of ensembles and perform continuum and physical-pion-mass extrapolations for the  −

and �+B decays.
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