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of asymptotically free RG flows are identified corresponding to non-trivial QFTs. None of these
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Spin-1 fields and RG flows in 4 dimensions

1. Introduction

In this work a straightforward QFT question is asked: what type of QFT can describe interacting,
asymptotically free spin-1 (vector) fields in 4 dimensions? If gauge invariance is imposed Yang-
Mills theory is unique and well-known, hence we do not require gauge invariance here only a global
𝑆𝑈 (𝑁) invariance, beyond locality, perturbative renormalizability and classical scale invariance.
The latter requirement is not essential it simply limits the number of allowed couplings to those
which are dimensionless.

At first one might think that gauge theory is the only option for having asymptotic freedom
with spin-1 fields but it turns out this is not the case, at least in Euclidean signature. The explicit
computation of the 1-loop 𝛽-functions in the space of 7 couplings (corresponding to the 7 allowed
operators in the most general Lagrangian) shows that for any 𝑁 a finite number of asymptotically
free RG flows exist, more precisely 4 of these for 𝑁 > 5. These RG flows correspond to non-
trivial perturbative and asymptotically free quantum field theories which are not gauge theories.
Straightforward large-𝑁 scaling works as expected, and the qualitative features of the 𝑁 → ∞
model is the same as with finite 𝑁 > 5.

Similar questions as the one addressed in this work were discussed in the abelian case in [1]
and rather qualitatively for the non-abelian case in [2].

The most general Lagrangian for the study of spin-1 fields is given in section 2. The 𝛽-functions
are computed in section 3 to 1-loop and the resulting RG flows are studied as well. Asymptotically
free RG flows are identified and the large-𝑁 limit is also spelled out. Finally, section 4 contains our
conclusions and outlook to possible refinements and further research.

2. Lagrangian

The spin-1 fields will be labelled by 𝐴𝑎
𝜇 in the adjoint representation of 𝑆𝑈 (𝑁). We seek

the most general 4-dimensional, globally 𝑆𝑈 (𝑁) and Euclidean invariant Lagrangian with at most
two derivatives, dimensionless couplings and perturbatively renormalizable interactions. It is
straightforward to show that up to total derivatives a possible parametrization in terms of 7 couplings,
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(𝑧, 𝑔1, 𝑔2, 𝑔3, 𝑔4, ℎ1, ℎ2) is,
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where 𝑓𝑎𝑏𝑐 is the totally anti-symmetric and 𝑑𝑎𝑏𝑐 is the totally symmetric tensor of 𝑆𝑈 (𝑁). For a
well-defined path integral representation 𝑧 ≥ 0 is required as well as a non-negative potential 𝒱.
The requirement on (𝑔1, 𝑔2, 𝑔3, 𝑔4) for the latter to hold is non-trivial, one of the following two
conditions is necessary,

𝑔1 ≥ 0 , 𝑔2 + 𝑔3 ≥ −𝑔1(𝑁 − 2)

𝑔1 ≤ 0 , 𝑔2 + 𝑔3 ≥ −𝑔1
2(𝑁 − 2)2

𝑁 − 1
, (2)

and any one of the following is sufficient,

𝑔1 ≥ 0 , 4𝑔2 + 𝑔3 ≥ 0 , 𝑔3 ≥ 0 , 𝑔4 ≥ 0
𝑔1 ≥ 0 , 4𝑔2 + 𝑔3 ≥ 8𝑔1 , 𝑔3 ≥ 0 , 3𝑔4 ≥ −2𝑔1
𝑔1 ≥ 0 , 𝑔2 + 𝑔3 ≥ 0 , 𝑔3 ≤ 0 , 𝑔4 ≥ 0
𝑔1 ≤ 0 , 𝑔2 + 2(𝑁 − 1)𝑔1 ≥ 0 , 𝑔3 ≥ 0 , 𝑔4 ≥ 0 .

(3)

A complete set of minimal necessary and sufficient conditions is presently not known.

3. 𝛽-functions and RG flows

Since all possible terms allowed by symmetry are included in (1), all terms are perturba-
tively renormalizable and a well-defined path integral can be defined in Euclidean signature, the
𝛽-functions of the 7 couplings can be computed in a straightforward manner. The diagrams con-
tributing in MS at 1-loop are listed in figure 1. For simplicity let us introduce 𝑔5 = ℎ2

1 and 𝑔6 = ℎ2
2.

Schematically, the 1-loop 𝛽-functions are,

𝜇
𝑑𝑧

𝑑𝜇
= 𝛽𝑧 = 𝑧𝐿𝑧 (𝑔5, 𝑔6)

𝜇
𝑑𝑔𝑖

𝑑𝜇
= 𝛽𝑖 = 𝑄𝑖 (𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6) 𝑖 = 1, 2, 3, 4 (4)

𝜇
𝑑𝑔𝑖

𝑑𝜇
= 𝛽𝑖 = 𝑔𝑖𝐿𝑖 (𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6) 𝑖 = 5, 6 ,
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Spin-1 fields and RG flows in 4 dimensions

Figure 1: Diagrams contributing at 1-loop order in dimensional regularization. Rows from top to bot-
tom: propagator, renormalization of 𝑧; 3-vertex, renormalization of (ℎ1, ℎ2); 4-vertex, renormalization of
(𝑔1, 𝑔2, 𝑔3, 𝑔4).

where 𝑄1,2,3,4 are quadratic monomials in the couplings with coefficients which are themselves
polynomial in 𝑧 and 𝐿𝑧,5,6 are linear in the couplings and also polynomial in 𝑧. All expressions
depend on 𝑁 as well. Clearly, 𝑧, 𝑔5, 𝑔6 renormalize multiplicatively. The precise form of the
𝛽-functions can be found in [3], which were computed with the extensive help of FORM [7–9].

There is a line of Gaussian fixed points in the space of couplings given by an arbitrary 𝑧 and
𝑔𝑖 = 0 for all 𝑖 = 1, . . . , 6. Clearly, 𝛽𝑧 = 𝛽𝑖 = 0 everywhere on this line. We will be looking for
RG flows which in the UV end up on this line asymptotically. Such an RG trajectory will define a
non-trivial perturbative quantum field theory. Both 𝑔5 and 𝑔6 can not be identically zero, but for
the sake of simplicity let’s assume 𝑔5 = 0. The situation with 𝑔5 ≠ 0 is spelled out in detail in [3].
Now we are dealing with 6 couplings (𝑧, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔6) and look for RG flows which for 𝜇 → ∞
behave as,

𝑔𝑖 (𝜇) ∼ 16𝜋2 𝐶𝑖

log 𝜇

Λ

, 𝑖 = 1, . . . , 4, 6

𝑧(𝜇) ∼ 𝑐𝑜𝑛𝑠𝑡 , (5)
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with some scale Λ and constants 𝐶𝑖 which are subject to the non-trivial positivity constraint
mentioned in section 2. Assuming an asymptotically free RG flow as in (5), clearly the ratios
𝑟𝑖 = 𝑔𝑖/𝑔6 for 𝑖 = 1, . . . , 4 are constant towards the UV, 𝑟𝑖 → 𝐶𝑖/𝐶6. Hence our goal is to find
UV fixed points in the space (𝑧, 𝑟1, 𝑟2, 𝑟3, 𝑟4) and asymptotically free 𝑔6, which is a straightforward
exercise once the 𝛽-functions are known explicitly. The results will be solutions of complicated
polynomial equations for every 𝑁 and are given in table 1.

It is clear from table 1 that for any 𝑁 there is a finite number of asymptotically free RG flows.
Once an RG flow is identified it may be characterized by the stability or instability of 𝒱 and also
by its stability in the RG sense.

The point 𝑧 = 0 is always a fixed point and the only fixed point for 𝑁 > 5. The 𝑁 ≤ 5 cases
are qualitatively different from 𝑁 > 5 also in the sense that in the latter case there is a unique fixed
point in the 𝑧 = 0 plane which is stable in the RG sense. Furthermore, all fixed points for 𝑁 > 5
correspond to a stable potential 𝒱. Fixed points which correspond to a stable 𝒱 lead to perfectly
well-defined perturbative quantum field theories of spin-1 fields, which are not gauge theories.
Those which are stable in the RG sense as well are insensitive to small deformations, as usual. The
𝑧 = 0 fixed points can be interpreted as having a constraint 𝜕𝜇𝐴𝑎

𝜇 = 0 because of the appearance of
the coupling 1/𝑧 in (1). As a result the original 4 degrees of freedom are reduced to 3. Note that
the 𝜕𝜇𝐴

𝑎
𝜇 = 0 constraint has nothing to do with gauge fixing since gauge invariance is not present

to begin with. The constraint arose dynamically from the nature of the particular UV fixed points.
It should be noted that we have been working in Euclidean signature and Wick rotation back to

a unitary theory in Minkowski space time is not possible. This is because, as is well-known, gauge
invariance is required to kill off the negative norm states which is of course not present on any of
the RG flows considered here. In order to study how gauge symmetry emerges in a perturbative
treatment such as ours, one must include ghost fields; for more details see [3].

Another aspect of table 1 is the smoothness of the large-𝑁 limit. Similarly to the situation in
gauge theory the 𝑁 → ∞ limit is performed at constant 𝑁𝑔𝑖 . The fixed point ratios 𝑟𝑖 = 𝐶𝑖/𝐶6 have
well-defined large-𝑁 limits of course and so does 𝑁𝐶𝑖 . Qualitatively all 𝑁 > 5 cases are similar,
the strict 𝑁 → ∞ limit only makes some of the ratios between different fixed points degenerate.
The 4 fixed points only differ in 𝑟2 and 𝑟3 in this limit and one of them is stable in the RG sense.

4. Conclusion and outlook

In this work a seemingly simple QFT question was posed: what is the most general QFT
describing a set of spin-1 fields with global 𝑆𝑈 (𝑁) invariance. The RG phase space was mapped
out in the 1-loop approximation and a finite number of asymptotically free RG flows were found for
any𝑁 . More precisely, only classically scale invariant couplings were considered, i.e. dimensionless
couplings. Note that in this case scale invariance does not imply conformal invariance [4–6]. If
dimensionful couplings are allowed, but global 𝑆𝑈 (𝑁) invariance is still imposed, a mass term can
be added to the Lagrangian,

ℒ𝑚 =
𝑚2

2
𝐴𝑎
𝜇𝐴

𝑎
𝜇 . (6)

The perturbative expansion of the corresponding anomalous dimension is beyond the scope of the
present work but would be interesting to work out in the future.
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𝑁 𝑧 𝑟1 𝑟2 𝑟3 𝑟4 𝑁𝐶6 𝒱

3 0 0.054652 0.122003 0.485317 0.970537 0.138656 stable
3 0 0.064145 0.133021 0.665179 0.964086 0.137153 stable
3 0 -0.647582 -0.580231 1.889786 1.204615 0.138656 unstable
3 0 -0.562664 -0.493787 1.918797 1.173022 0.137153 unstable
3 25/3 0.000334 0.079592 -0.251950 1.020083 0.148484 unstable
3 25/3 0.010673 0.074642 -0.144563 1.004360 0.145542 unstable
3 25/3 -0.108161 -0.028903 -0.034960 1.056248 0.148484 unstable
3 25/3 -0.080316 -0.016348 0.037417 1.034690 0.145542 unstable
4 0 0.044841 0.106784 0.351786 0.979028 0.140948 stable
4 0 0.074162 0.083060 1.368389 0.960858 0.136196 stable
4 25/3 0.004413 0.111209 -0.323177 1.013219 0.146900 unstable
4 25/3 0.016297 0.243636 -0.344606 0.995511 0.145494 unstable
4 25/3 0.017435 0.119096 -0.223217 0.997309 0.144605 unstable
4 25/3 0.017931 0.235838 -0.327356 0.993784 0.145177 unstable
5 0 0.042754 0.103223 0.327436 0.981138 0.141567 stable
5 0 0.054311 1.073479 0.536511 0.957994 0.142046 stable
5 0 0.067257 -0.066910 1.896637 0.967324 0.136857 stable
5 0 0.069027 0.516675 1.600829 0.956705 0.138188 stable
5 25/3 0.012566 0.149475 -0.375377 1.003344 0.145326 unstable
5 25/3 0.021321 0.180212 -0.347564 0.993910 0.144298 unstable
6 0 0.041817 0.101590 0.316866 0.982127 0.141864 stable
6 0 0.048648 1.137578 0.428569 0.966346 0.142530 stable
6 0 0.059916 -0.214070 2.277709 0.972682 0.137748 stable
6 0 0.062649 0.434621 2.043391 0.963808 0.138624 stable
7 0 0.041301 0.100682 0.311136 0.982683 0.142032 stable
7 0 0.045944 1.161333 0.383774 0.971232 0.142626 stable
7 0 0.054742 -0.321825 2.541816 0.976034 0.138570 stable
7 0 0.057376 0.412019 2.341096 0.968497 0.139238 stable
10 0 0.040625 0.099483 0.303720 0.983425 0.142259 stable
10 0 0.042691 1.184351 0.334451 0.977917 0.142606 stable
10 0 0.047136 -0.495636 2.966144 0.980468 0.140207 stable
10 0 0.048800 0.401667 2.839408 0.975942 0.140564 stable
50 0 0.040047 0.098451 0.297474 0.984071 0.142458 stable
50 0 0.040124 1.198242 0.298567 0.983855 0.142474 stable
50 0 0.040300 -0.680516 3.425269 0.983967 0.142360 stable
50 0 0.040376 0.410710 3.418741 0.983752 0.142375 stable
100 0 0.040030 0.098420 0.297287 0.984091 0.142464 stable
100 0 0.040049 1.198589 0.297559 0.984037 0.142468 stable
100 0 0.040093 -0.686738 3.440904 0.984065 0.142439 stable
100 0 0.040112 0.411281 3.439259 0.984011 0.142443 stable
∞ 0 0.040024 0.098409 0.297224 0.984097 0.142466 stable
∞ 0 0.040024 1.198704 0.297224 0.984097 0.142466 stable
∞ 0 0.040024 -0.688818 3.446135 0.984097 0.142466 stable
∞ 0 0.040024 0.411476 3.446135 0.984097 0.142466 stable

Table 1: Non-trivial fixed points with 𝑔5 = 0 for the ratios 𝑟𝑖 = 𝑔𝑖/𝑔6 = 𝐶𝑖/𝐶6, and the coefficient 𝐶6; see
(5). The last column indicate whether the potential 𝒱 is stable or not. For 𝑁 > 5 there is a unique fixed
point for which 𝒱 ≥ 0 and is stable in the RG-sense in the 𝑧 = 0 plane, these are shown in bold.
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Similarly, a worthwhile extension of the present work would be the calculation of the 𝛽-
functions to 2-loops or more. Since asymptotic freedom can be established by the 1-loop calculation
alone, it is expected that the main conclusion will not change, namely that for any 𝑁 well-defined,
asymptotically free, perturbative Euclidean quantum field theories exist, which are not gauge
theories.
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