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We present a lattice calculation of the Euclidean position-space windows contributing to the
leading-order hadronic vacuum polarization term of the muon anomalous magnetic moment aµ.
Short-, intermediate- and long-distance windows are considered in order to isolate different scales
sensitive to specific integration ranges of experimental time-like data used in the R-ratio. By
adopting the same smooth window function introduced by the RBC and UKQCD Collaborations
with width parameter ∆ = 0.15 fm, for the isospin-symmetric, light, quark-connected component
we get aSD

µ (ud) = 48.21 (80) · 10−10 , aW
µ (ud) = 202.2 (2.6) · 10−10 and aLD

µ (ud) = 382.5 (11.7) ·
10−10 in the short- (SD), intermediate- (W) and long-distance (LD) time regions, respectively, with
t0 = 0.4 fm and t1 = 1.0 fm. Our results are obtained using the gauge configurations generated by
the Extended Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, at three values
of the lattice spacing varying from 0.089 to 0.062 fm, at several lattice volumes and with pion
masses in the range Mπ ' 220 − 490 MeV.
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1. Introduction

The muon magnetic moment anomaly, aµ = (g − 2)/2, exhibits a long-standing discrepancy
between the Standard Model (SM) prediction and the experimentally measured value. Since this
tension, if confirmed with high significance, might provide an indirect evidence for new physics
beyond the SM, an intense research program is currently underway in order to achieve a significant
reduction of the experimental and theoretical uncertainties.

The new Fermilab Muon g − 2 (E989) experiment has recently presented its first results for the
positive muon magnetic anomaly, analyzing Run-1 measurements collected during the data taking
in 2018. The value of aµ, determined with an accuracy of 0.46 ppm [1], is found to be in excellent
agreement with the previous E821 measurement at BNL [2], while it differs from the SM prediction
by 3.3σ. Data analyses on the second and third runs of the E989 experiment are underway and, by
combining the results from all runs, a final sensitivity four-times better than the E821 determination
is expected to be reached. An alternative low-energy approach at J- PARC is expected to reach a
precision similar to the existing BNL measurement.

On the theoretical side the present accuracy of the SM prediction is at 0.53 ppm [3]. To
leverage the new experimental efforts, the theory errors must be reduced to the same level as the
experimental uncertainties. The main contribution to aµ comes from quantum electrodynamics
(QED) and can be accurately computed using a perturbative expansion in the fine-structure constant
αem [4, 5]. The small electroweak corrections are also under control [6, 7]. Finally, although
quarks and gluons do not couple directly to the muon, they do interact via loop diagrams. Even if
hadronic contributions are relatively small, they completely dominate the error budget and are the
limiting factor in view of reducing the theory error. The dominant sources of uncertainty in the SM
prediction are from two distinct contributions: the hadronic vacuum polarization (HVP) that starts
to O(α2

em) and the hadronic light-by-light scattering (HLbL) contributions entering at O(α3
em).

There are a number of complementary theoretical efforts underway to better understand and
quantify these hadronic corrections, including dispersive methods, lattice QCD, and effective field
theories, as well as a number of different experimental efforts to provide inputs to dispersive, data-
driven evaluations. A concerted effort of the theory community to improve upon and scrutinize
the existing SM results has been made possible thanks to the formation of the Muon g − 2 Theory
Initiative and a Whitepaper summarizing the current theory status has been recently finalized [8].
The main outcome is that for aHVP

µ the overall lattice precision is not yet competitive with respect to
the one of the dispersive results, while recent lattice estimates of the HLbL term are consistent with
the phenomenological and dispersive findings within the current level of precision and rule out the
HLbL contribution as an explanation for the current tension between theory and experiment.

For the HVP contribution, however, tensions exist within lattice QCD calculations as well as
between lattice QCD calculations and R-ratio results. Recently the BMW collaboration [9] claims
to have reached a precision for aHVP

µ similar to the one of the dispersive approaches, although getting
a 2.1σ discrepancy for the central values. At this point, the lattice calculations exhibiting a tension
with R-ratio results share some aspects. They are performed at physical pion mass, with staggered
sea quarks and use inverse lattice spacings in the range from a−1 ≈ 1.6 GeV to a−1 ≈ 3.5 GeV.
Concretely, there are tensions for the isospin-symmetric quark-connected light-quark contribution,
which provides almost 90% of the total aHVP

µ .
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Matching the precision of the new experiments requires to determine the HVP contribution at
the per-mille level and this represents an enormous challenge for lattice simulations. Since current
estimates for this observable are usually dominated by systematic errors, it is of major importance
to perform further cross-checks between collaborations to provide evidence that lattice simulations
are under control. In particular the topical workshop by the Muon g − 2 Theory Initiative “The
hadronic vacuum polarization from lattice QCD at high precision” held online in November 2020
(https://indico.cern.ch/event/956699/) has offered a platform to compare lattice results
for Euclidean position-space windows contributing to aHVP

µ . The advantage of those quantities,
defined in the following section, is that, by choosing an appropriate window, the calculation can
be made much less challenging on the lattice than for the full aHVP

µ . Those observables, being less
sensitive to some specific source of systematic error, are considered to be particularly well-suited
benchmark candidates for comparing different lattice methods. In this respect, many collaborations
have presented their preliminary determinations for the window contributions in numerous talks at
this Lattice conference.

In this contribution we present our results for the short-, intermediate- and long-distance
windows of the isospin-symmetric, light, quark-connected component of aHVP

µ using the QCD
gauge configurations generated by ETMC with Nf = 2 + 1 + 1 dynamical quarks, at three values
of the lattice spacing varying from 0.089 to 0.062 fm, at several values of the lattice spatial size
(L ' 1.8 ÷ 3.5 fm) and with pion masses in the range between ≈ 220 and ≈ 490 MeV (details
concerning the 17 ETMC gauge ensembles can be found in Table 1 of Ref. [10]). For further
readings on our lattice determinations of aHVP

µ we refer the interested reader to Refs. [10–14].

2. Definitions

The light-quark contribution to the HVP term of the muon anomalous magnetic moment can
be calculated by adopting the time-momentum representation [15]

aHVP
µ (ud) = 4α2

em

1
m2
µ

∫ ∞

0
dt K (mµt)Vud (t) , (1)

where the kernel function K is given by 1

K (z) = z2
∫ 1

0
dx(1 − x)

[
1 − j2

0

(
z
2

x
√

1 − x

)]
(2)

and Vud (t) is the vector current-current Euclidean correlator defined as

Vud (t) ≡ −
1
3

∑
i=1,2,3

∫
d~x 〈Judi (~x, t)Judi (0)〉 , (3)

with t being the Euclidean time distance and

Judµ (x) ≡
∑
f=u,d

qf ψ f (x)γµψ f (x) . (4)

1In Eq. (2) j0(y) is the spherical Bessel function j0 = sin (y)/y.
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It is instructive to isolate specific ranges of Euclidean time in order to better understand their
contributions to aHVP

µ (ud). This can be accomplished by constructing windows that suppress
contributions outside of the window region. The window method has been presented for the first
time in Ref. [16] as a tool to improve the accuracy of the HVP by supplementing the dispersive
results based on R-ratio measurements with lattice inputs in a time-region where the lattice data
turn out to be more precise. Rather than using Heaviside step functions to isolate these ranges,
which would have significant dependence on the lattice cutoff near the boundary of the window, a
smoothed step is considered [16]

Θ(t, t ′;∆) =
1

1 + e−2(t−t′)/∆ . (5)

This step function suppresses all values below t ′ and has a width parameterized by ∆. From these
step functions, windows into specific regions of aHVP

µ (ud) Euclidean time can be studied by instead
convoluting the integrand of Eq. (1) with the smooth window function (5).

In what follows we consider the contributions of three separate windows, namely

aSD
µ (t0;∆) ≡ 4α2

em

1
m2
µ

∫ ∞

0
dt K (mµt)Vud (t) [1 − Θ(t, t0;∆)] , (6)

aW
µ (t0, t1;∆) ≡ 4α2

em

1
m2
µ

∫ ∞

0
dt K (mµt)Vud (t) [Θ(t, t0;∆) − Θ(t, t1;∆)] , (7)

aLD
µ (t1;∆) ≡ 4α2

em

1
m2
µ

∫ ∞

0
dt K (mµt)Vud (t)Θ(t, t1;∆) , (8)

where the function Θ(t, t ′;∆) is defined in (5) and the parameters t0, t1 and ∆ are chosen to be

t0 = 0.4 fm , t1 = 1.0 fm , ∆ = 0.15 fm . (9)

By design, the choice of the above parameters leads to several advantages for the intermediate
window (7), since both the short-distance region, where large cutoff effects are present, and the
long-distance region, where the statistical uncertainties and finite-volume effects (FVEs) are large,
are cut away.

3. Effective lepton mass and effective windows

To perform the calculation of the three windows defined in (6)-(8) we generalize the ETMC
effective lepton mass procedure introduced in Ref. [17]. Namely, we assume effective values both
for the lepton mass me f f

µ and for the parameters te f f0 , te f f1 and ∆e f f defined as

me f f
µ ≡

(
mµ/X phys

)
X , (10)

te f f0 ≡ t0X phys/X , (11)

te f f1 ≡ t1X phys/X , (12)
∆
e f f ≡ ∆ X phys/X , (13)

where X is a hadronic quantity having the dimension of a mass, which can be extracted from lattice
correlators, and X phys is its value at the physical point. In what follows we refer to the choices
(10-13) as the effective lepton mass (ELM) and effective window (EW) procedure.
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Thus, in the case of the intermediate window (taken as an example) we get

aW
µ (te f f0 , te f f1 ;∆e f f ) ≡ 4α2

em
*
,

1
me f f
µ

+
-

2 ∫ ∞

0
dt K (me f f

µ t)Vud (t)

·
[
Θ(t, te f f0 ;∆e f f ) − Θ(t, te f f1 ;∆e f f )

]
, (14)

which for discretized values of t = an (with n = 1, . . . NT ) becomes

aW
µ (te f f0 , te f f1 ;∆e f f ) ≡ 4α2

em

1
r2
µ

1
(aX )2

NT∑
n=1

dt K (rµaXn) a3Vud (an)

· [Θ(aXn, τ0; τ∆) − Θ(aXn, τ1; τ∆)] , (15)

where

rµ ≡ mµ/X phys , (16)
τ0 ≡ t0X phys , (17)
τ1 ≡ t1X phys , (18)
τ∆ ≡ ∆ X phys , (19)

The main attractive feature of Eq. (15) is that it involves both the vector correlator a3Vud (an)
and the quantity (aX ) both in lattice units. Therefore, the knowledge of the lattice spacing is not
required at all and the uncertainty of the scale setting cannot play any role.

An equivalent way to calculate aW(te f f0 , te f f1 ;∆e f f ) is to introduce the dimensionless variable

τ ≡ Xt , (20)

which yields

aW
µ (te f f0 , te f f1 ;∆e f f ) ≡ 4α2

em

1
r2
µ

1
(aX )3

∫ ∞

0
dτ K (rµτ) a3Vud (τ/(aX ))

· [Θ(τ, τ0; τ∆) − Θ(τ, τ1; τ∆)] , (21)

where the vector correlator a3Vud (τ/(aX )) can be obtained from the lattice data by smooth
interpolation2.

4. Intermediate-distance window

Adopting the ETMC gauge ensembles of Ref. [10] we try different choices of the hadronic
quantity X appearing in Eq. (15), like the pion mass (X = Mπ) or the pion decay constant (X = fπ).
The goal is to achieve a dependence of aW

µ (ud) on the simulated pion mass as much flat as possible.
This can be obtained by using X = fπ (with f physπ = 130.4 MeV) and the corresponding results for
aW
µ (ud) are shown in Fig. 1 versus the simulated pion mass Mπ . It can be seen that the dependence

on Mπ is quite mild, while FVEs and discretization effects play a relevant role.

2We have explicitly checked that Eqs. (15) and (21) provide the same results (central values and errors).
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Figure 1: Results obtained for aW
µ using Eq. (21) with X = f⇡ and adopting the ETMC

gauge ensembles employed in our study of the light-quark contribution to the HVP term
in Ref. [1].

where A0, A1`, A1, A2, D and F are free parameters. We have tried several values
of the power p, finding that the optimal choice is p ' 2. Therefore, in what follows
we put p = 2. In Fig. 2 the results obtained using a quadratic fit (i.e. Eq.(22) with
A1` = 0 and A2 6= 0) are shown against the lattice data corrected for the FVEs
determined in the fitting procedure.

At the physical point our preliminary result is

aW
µ = 202.2 ± 2.0stat+fit ± 0.4chir ± 1.5disc ± 0.7FV E [2.6] · 10�10 , (23)

where

• ()stat+fit indicates the uncertainty induced by the statistical Monte Carlo
errors of the simulations and its propagation in the fitting procedure;

• ()chir is the error due to the chiral extrapolation, estimated from the spread
of the results corresponding to either a log (A1` 6= 0 and A2 = 0) or quadratic
(A1` = 0 and A2 6= 0) fitting function;

• ()disc is the uncertainty due to discretization e↵ects, estimated from the
spread of the results corresponding to the use of the methods M1 and M2,
which di↵er by O(a2) e↵ects, employed in Ref. [3] to determine the relevant
renormalization constants in the RI-MOM0 method;

4

Figure 1: Results obtained for aW
µ (ud) using Eq. (21) with X = fπ and adopting the ETMC gauge ensembles

employed in our study of the light-quark contribution to the HVP term in Ref. [10].

We perform the extrapolations to the physical pion point (Mphys
π = 135 MeV) and to the

continuum and infinite volume limits adopting the following phenomenological ansatz

aW
µ (ud) = A0

[
1 + A1`M2

π log
(
M2
π

)
+ A1M2

π + A2M4
π + D1a2αn

s (1/a) + D2a4
]

·
[
1 + FM2

πe−MπL/(MπL)p
]
, (22)

where A0, A1`, A1, A2, D1, D2 and F are free parameters. We have tried several values of the power
p, finding that the optimal choice is p ' 2. Therefore, in what follows we put p = 2. In Fig. 2 the
results obtained using a quadratic fit (i.e. Eq. (22) with A1` = 0 and A2 , 0) are shown against the
lattice data corrected for the FVEs determined in the fitting procedure.

At the physical point our result is

aW
µ (ud) = 202.2 (2.0)stat+ f it (0.4)chir (1.5)disc (0.7)FVE [2.6] · 10−10 , (23)

where

• ()stat+ f it indicates the uncertainty induced by the statistical Monte Carlo errors of the simu-
lations and its propagation in the fitting procedure;

• ()chir is the error due to the chiral extrapolation, estimated from the spread of the results
corresponding to either a log (A1` , 0 and A2 = 0) or quadratic (A1` = 0 and A2 , 0) fitting
function;

• ()disc is the uncertainty due to discretization effects. This is estimated in three ways: i) from
the spread of the results corresponding to the use of the methods M1 and M2, which differ
by O(a2) effects, employed in Ref. [18] to determine the relevant renormalization constants

6
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in the RI′-MOM method; ii) by comparing the results corresponding to different choices
of n = 0, . . . , 3 without fitting a4 corrections (i.e. D2 = 0); iii) by fixing n = 0 and either
including or excluding the D2a4 term. We then combine those estimates according to Eq. (28)
of Ref. [18];

• ()FVE is the uncertainty generated by FVEs, estimated by excluding the results corresponding
to the two ensembles A40.XX with the smallest lattice size.

160

180

200

220

240

0.1 0.2 0.3 0.4 0.5 0.6

β = 1.90, L/a = 20 (FVE corr.)

β = 1.90, L/a = 24 (FVE corr.)

β = 1.90, L/a = 32 (FVE corr.)

β = 1.90, L/a = 40 (FVE corr.)

β = 1.95, L/a = 24 (FVE corr.)

β = 1.95, L/a = 32 (FVE corr.)

β = 2.10, L/a = 48 (FVE corr.)

fit (continuum)

fit at β = 1.90

fit at β = 1.95

fit at β = 2.10

a µ
W
 *

 1
010

M
π
   (GeV)

phys. point ELM and EW

Figure 2: Results obtained for aW
µ using a quadratic fit (i.e. Eq.(22) with A1` = 0 and

A2 6= 0). The lattice data are corrected for the FVEs determined in the fitting procedure.
The dotted, short-dashed and dashed lines are the results of the fit (22) at fixed lattice
spacing in the infinite volume limit. The solid line corresponds to the result () in the
continuum and infinite volume limit.

• ()FV E is the uncertainty generated by FVEs, estimated by excluding the
results corresponding to the two ensembles A40.XX with the smallest lattice
size.

We repeat our ELM and EW procedure also in the case of the short-distance
window contribution aSD

µ . The quality of the extrapolation to the physical pion
point and to the continuum limit is illustrated in Fig. 3. It can be seen that using
X = f⇡ the pion mass dependence is a bit more pronounced for aSD

µ with respect
to aW

µ . At the physical point our preliminary result is

aW
µ = 48.21 ± 0.56stat+fit ± 0.10chir ± 0.50disc ± 0.25FV E [0.80] · 10�10 . (24)

Adopting the analytic representation of the vector correlator V ud(t) developed
in Ref. [1] we obtain

aW
µ = 198.0 ± 3.4stat ± 4.7syst [5.8] · 10�10 , (25)

aSD
µ = 48.6 ± 1.8stat ± 1.0syst [2.0] · 10�10 , (26)

5

Figure 2: Results obtained for aW
µ (ud) using a quadratic fit (i.e. Eq. (22) with A1` = 0 and A2 , 0). The

lattice data are corrected for the FVEs determined in the fitting procedure. The dotted, short-dashed and
dashed lines are the results of the fit (22) at fixed lattice spacing in the infinite volume limit. The solid line
corresponds to the result (23) in the continuum and infinite volume limit.

So far, only four collaborations have published lattice results for aW
µ (ud), but some preliminary

determinations have been recently presented. In Fig. 3 we compare our finding (23) both with other
non-perturbative predictions and with a R-ratio estimate, obtained in [9] by subtracting all lattice
contributions, except the light-quark-connected one, from the phenomenological determination
based on dispersive analyses of the experimentally measured e+e− → hadrons data. Lattice results
are classified according to the fermion action adopted and the number of dynamical quarks included
in the simulations. We observe some tensions between different estimates. More importantly, a
significant tension appears between the R-ratio prediction and the lattice determinations based on
calculations with staggered sea quarks.

5. Short- and long-distance windows

We repeat our ELM and EW procedures also in the case of the short-distance window contri-
bution aSD

µ (ud). The quality of the extrapolation to the physical pion point and to the continuum

7
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Figure 3: Comparison of lattice and phenomenological results for the intermediate-distance window of the
isospin-symmetric, light, quark-connected component of aHVP

µ . Results correspond to the same choice of the
parameters entering the window function (5), namely (t0, t1,∆) = (0.4, 1.0, 0.15) fm. Lattice determinations
are classified according to the fermion action adopted ("Wilson-like" and staggered formulations indicated
by red and orange data points, respectively) and the number of dynamical quarks used in the simulations.
Each value is extracted by the following references: Aubin et al. [19], LM [20], BMW [9], FHM [21],
RBC/UKQCD [16], Mainz/CLS [22], R-ratio & lattice [9]. The two determinations of Aubin et al. differ
in the procedure used to perform the continuum extrapolation, while Mainz/CLS provides two preliminary
estimates obtained by rescaling or not the raw lattice data.

limit is illustrated in Fig. 4. The same fit function defined in (22) is adopted. It can be seen that
using X = fπ the pion mass dependence is a bit more pronounced for aSD

µ (ud) with respect to
aW
µ (ud). At the physical point our result is

aSD
µ (ud) = 48.21 (0.56)stat+ f it (0.10)chir (0.50)disc (0.25)FVE [0.80] · 10−10 . (24)

where the error budget is estimated as in (23).
As far as the long-distance contribution aLD

µ (ud) is concerned, the use of ELM and EW
procedures adopting either X = Mπ or X = fπ does not lead to a mild pion mass dependence of
aLD
µ (ud). Moreover, the FVEs are large and they need to be treated in a non-perturbative way as

done in Ref. [10]. Therefore, we limit ourselves to quote the result for aLD
µ (ud) obtained at the

physical point using the analytic representation of the vector correlator Vud (t) of Ref. [10], namely

aLD
µ (ud) = 382.5 (10.5)stat+ f it (5.2)syst [11.7] · 10−10 . (25)

Adopting the analytic representation of the vector correlator Vud (t) developed in Ref. [10] for
the SD and W windows too, we obtain

aW
µ (ud) = 198.0 (3.4)stat+ f it (4.7)syst [5.8] · 10−10 , (26)

aSD
µ (ud) = 48.6 (1.8)stat+ f it (1.0)syst [2.0] · 10−10 , (27)
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Figure 3: The same as in Fig. 2 but in the case of short-distance contribution aSD
µ .

which in a reassuring way agree with the results (23) and (24) within larger un-
certainties.

As far as the long-distance contribution aLD
µ is concerned, the use of ELM

and EW procedure adopting either X = M⇡ or X = f⇡ does not lead to a mild
pion mass dependence of aLD

µ . Moreover, the FVEs are large and they need to
be treated in a non-perturbative way as done in Ref. [1] . Therefore, we limit
ourselves to quote the result for aLD

µ obtained at the physical point using the
analytic representation of the vector correlator V ud(t) of Ref. [1] , namely

aLD
µ = 382.5 ± 10.5stat ± 5.2syst [11.7] · 10�10 . (27)
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Figure 4: The same as in Fig. 2 but in the case of short-distance contribution aSD
µ .

which in a reassuring way agree with the results (23) and (24) within larger uncertainties.
As done for the intermediate-distancewindow inSec. 5, in Fig. 5we compare our determinations

for aSD
µ (ud) and aLD

µ (ud) with lattice results available from other collaborations.
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Figure 5: The same as in Fig. 3 for the short- (left panel) and long- (right panel) distance windows aSD
µ (ud)

and aLD
µ (ud).

6. Other contributions

We conclude the present contribution presenting some results for the intermediate-distance
window of the strange, charm and isospin-breaking (IB) components of aHVP

µ . The results obtained
at the physical point for each contribution are shown in Tab. 1. The uncertainties represent the sum
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in quadrature of various sources of errors, namely statistical, fitting procedure, input parameters,
discretization, FVEs and chiral extrapolation.

IB corrections contributing to orders O(α3
em) and O(α2

em(md − mu)/ΛQCD) are calculated
non-perturbatively within the RM123 approach [23], which consists in the expansion of the path
integral in powers of the u- and d-quark mass difference (md − mu) and of the electromagnetic
coupling αem. The quenched-QED (qQED) approximation, which treats dynamical quarks as
electrically neutral particles, is adopted and in Tab. 1 an estimate of the error due to the qQED
approximation is also included [12].

f s c IB
aW
µ ( f ) · 1010 26.9 (1.0) 2.81 (0.11) 0.7 (0.4)

Table 1: Results for the intermediate-distance window of the strange, charm and IB quark-connected
contributions to aHVP

µ . The parameters entering the window function (5) are set to (t0, t1,∆) = (0.4, 1.0, 0.15)
fm.

In Fig. 6 other lattice results present in the literature are collected and compared with ours.
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Figure 6: The same as in Fig. 3 for aW
µ (s) (upper left panel), aW

µ (c) (upper right panel) and aW
µ (IB) (lower

panel).

Using the findings of Refs. [9, 16] we estimate the contribution of the quark-disconnected
diagrams to be equal to aW

µ (disconn.) = −0.9 (0.2) · 10−10. Adding all the various contributions
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we get
aW
µ = 231.7 (2.8) · 10−10 , (28)

which remarkably agrees well with the more precise R-ratio estimate aW
µ = 229.7 (1.3) ·10−10 from

[9].
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