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1. Introduction

Quarkonia, the bound states of heavy quark-antiquark pairs have been played an important
role for the understanding of the Quark-Gluon Plasma (QGP), particularly after the proposition by
Matsui and Satz [1] that the suppression of quarkonium can be an important signal of the formation
of QGP. One way to understand the propagation of quarkonia inside the plasma is by defining a
thermal static quark-antiquark potential [2, 3]. The potential is defined by the following expression,

+ (A, )) = 8 lim
C→∞

m log,) (A, C)
mC

. (1)

Here,) (A, C) is a thermal averaged Wilson loop in real-time. The potential is only defined if
the above limit exists. At zero temperature, the existence of a potential follows from the transfer
matrix argument. At finite temperature, however, the existence of the above limit is a non-trivial
condition. In leading order Hard Thermal Loop (HTL) perturbation theory it has been found that
a potential can be defined and in contrast to zero temperature the finite temperature potential is
complex [2]. The real and imaginary part of the potential for A ∼ 1/<� is given by ,

+A4 (A) = −
62��

4c

(
4−<�A

A
+ <�

)
+8<(A) =

62��
4c

)

∞∫
0

3I
2I(

I2 + 1
)2

[
1 − sin I<�A

I<�A

]
.

(2)

Here 6 is the QCD coupling constant at scale ) and �� = 4/3 for QCD. The real part is the
Debye screened version of Coulomb potential with a Debye mass <� , whereas the imaginary part
is approaching zero at short distances and saturates at a long distance.

The definition of the potential in Eq. (1) requires a real time Wilson loop, but on the lattice
we can only calculate Wilson loops ,) (A, g) in imaginary time g ∈ (0, V = 1/)). The real time
Wilson loop can in principle be obtained from imaginary time Wilson loop ,) (A, g) by analytic
continuation, which is done by the spectral function d(A, l) [4] as follows,

,) (A, g) =
∫

3l exp(−l g)d(A, l)

,) (A, C) =
∫

3l exp(−8 l C)d(A, l).
(3)

The extraction of the spectral function d(A, l) from a finite set of data of ,) (A, g) is an unstable
problem without any initial prior of the spectral function. As a result various spectral functions
are possible which satisfy the lattice data. Some of the spectral functions, however, do not support
any well defined limit of Eq. (1) [15]. For various applications, like the construction of the spectral
function for point vector current correlator [5] or in open quantum system studies of quarkonia
[6, 7] one needs to have a potential. Because of this we will constrain our spectral function such
that a potential exist, quantiatively we will consider spectral functions that satisfies

lim
C→∞

∫
ld(l, A) exp(−8l C) 3l∫
d(l, A) exp(−8l C)3 l

= +A4 (A, )) − 8 +8<(A, )). (4)
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The Bayesian reconstruction method in [8] generates spectral functions that automatically satisfy
the above condition. In this proceeding, we will use a HTL motivated parametrization [9] which
also satisfies the above condition.

2. Method

In HTL perturbation theory, the leading order result for the Wilson loop is given by [2],

log,) (A, g) = 62��

∫
33 ®@
(2c)3

48@3A + 4−8@3A − 2
2

(
g

®@2 + Π! (0, ®@)
+∫ ∞

−∞

3@0

c
=� (@0) [1 + 4@0V − 4@0g − 4@0 (V−g) ]×[(

1
®@2 −

1
(@0)2

)
d! (@0, ®@) +

(
1
@2

3
− 1
®@2

)
d) (@0, ®@)

] )
.

(5)

Here d) and d! are the transverse and longitudinal components of the gluonic spectral function.
This expression leads to the HTL potential in Eq. (2). We observe that the real part and imaginary
part originate from rather different g dependencies of log,) (A, g). The real part is determined
from the linear part in g, whereas the imaginary part of the potential from the part periodic in g.

We also observe that the potential also does not get any contribution from the d) part of
Eq. (5). However, the presence of this term does affect the extraction of the potential from the
Euclidean lattice data. It has been shown [10] that in leading order, Coulomb gauge fixed Wilson
line correlator also reproduces the same complex potential in Eq. (2), however, this correlator does
not have any contribution from d) term.

Motivated by this we have calculated the Coulomb gauge fixed Wilson line correlator non-
perturbatively on the lattice. For the extraction of the real and imaginary part of the potential, we
have then assumed the following HTL based parametrization of,) (A, g) near g ∼ V

2 ,

log(,) (A, g)) = 20g +
∫ ∞

−∞
3lf(A, l) [exp(lg) + exp(l(V − g))] . (6)

For the existence of the potential,

lim
C→∞

8
m log(,) (A, C))

mC
= −20 − lim

C→∞

∫ ∞

−∞
3lf(A, l)l[exp(8lC) − exp(l(V− 8C))] = constant (7)

Using the identity limC→∞ [exp(8lC) − exp(l(V − 8C))] = 2c8lX(l), we see that the above
limit will exist only when f(A, l) ∼ 1

l2 as l→ 0. Further using the structure of HTL perturbative
results, we parametrize f(A, l) as follows,

f(A, l) = =1 (l)
(
2−1
l
+
∞∑
;=0

22;+1l
2;+1

)
(8)

Only odd terms are present because =1 (l) (exp(lg) +exp(l(V−g))) = −=1 (−l) (exp(−lg) +
exp(−l(V − g))).
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Using this f(l, A) we get [9],

− m log(,) (A, g))
mg

= −20 +
2 c 2−1
V

cot
cg

V
+
∞∑
;=0

22;+1�; (g, V), (9)

where � (g, V) = 2 (2;+2)!
V2;+3

[
Z

(
3 + 2;, g

V

)
− Z

(
3 + 2;, 1 − g

V

)]
.

Using Eq. (9), the potential can be obtained easily,

+ (A) = −20(A, )) − 8
2 c 2−1(A, ))

V
. (10)

The real and imaginary part can then be identified as +A4 (A, )) = −20(A, )) and +8<(A, )) =
2 c 2−1 (A ,) )

V
. Terms inside the summation of Eq. (9) do not surivive in the C → ∞ limit. Integrating

Eq. (9) with the first two terms, we get the following form of the correlator around g ∼ V

2 ,

,) (A, g) = �(A, )) exp
[
−+A4 (A, ))g −

V+8<(A, ))
c

log
(
sin

cg

V

)]
. (11)

3. Lattice Spectification

We have measured Wilson line correlators on Coulomb gauge fixed (2+1) flavor gauge field
configurations generated by the HotQCD and TUMQCD collaborations with temporal extent #g =
12 and spatial extent #B = 48[11, 12, 14]. The strange quark mass <B has been set to its physical
value and the light quark mass to <; = <B/20. The pion mass corresponding to this parameter is
161 MeV in the continuum limit[12]. These configurations are generated using the HISQ action
for the fermionic part and Luscher-Weisz gauge action for the gluonic part. As the temporal extent
is fixed, the temperature has been changed by changing the lattice spacing 0. The lattice spacings
have been fixed by the A1 scale, which is defined using zero temperature static &&̄ potential, and
we use A1 = 0.3106 5 < [13][14] whenever converting to physical units.

4. Results for the potential

To extract the potential we fit our lattice data with the first moment <1(A, g) defined as follows,

<1(A, g) = log
(
,) (A, g/0)

,) (A, g/0 + 1)

)
(12)

In terms of the parametrization in Eq. (11) we get,

<1(A, =g = g/0) = +A4 (A, )) 0 −
+8<(A, ))0#g

c
log

[
sin(c=g/#g)

sin(c(=g + 1)/#g)

]
(13)

We have performed a two-parameter correlated fit of the equation near g ∼ V

2 to extract the
real and imaginary part of the potential. For lattices with #g = 12 we have done the fitting only
with the points g/0 = 5, 6, 7, but it has been shown in the quenched approximation with large #g
that reasonable data points near g/0 ∼ #g/2 can be fitted using Eq. (12)[9]. The demonstration of
the fit for two temperatures is shown in Fig. 1. We see that the data near g ∼ V

2 is well described
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Figure 1: Lattice data fitted with HTL motivated parametrization of Eq. (12) at T=408 MeV (Left) and
T=667 MeV (Right).
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Figure 2: The complex potential obtained from HTL parametrization at various temperature as a function
of distance A . Real part (Left) shows medium modification above cross over temperature and Imaginary part
(Right) shows non-trival temperature dependence.

by HTL parametrization. The smaller and higher g range is not expected to be described by the
HTL parametrization. A subtracted correlator, where the UV contaminated part is removed, has
also been used to extract the real and imaginary part of the potential in [15].

The real and imaginary part from this fit is shown in Fig. 2. We see that the real part of the
potential shows medium modifications above the cross-over temperature. The large distance part of
the potential shows much flatter behavior compared to the zero temperature linear behavior related
to the string tension. The short-distance part of the potential shows medium modifications at a
higher temperature. On the other hand, the imaginary part increases with distance at the available
distances for a given temperature and approaches zero at a short distance. For a given distance the
imaginary part also increases with temperature. These features of the potential are in qualitative
agreement with the potential obtained in [8, 9]. It is important to note that although the data can be
fitted with the HTL parametrization, the real and imaginary parts obtained from the fits can not be
quantitatively described by the HTL potential in Eq. (2).
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Figure 3: Dominant peak of spectral function of Eq. (11).

Once we have the real and imaginary part of the potential, we can compute the dominant peak
of the spectral function using Eq. (11). The spectral function can be obtained from,

d(A, l) = 1
2c

∫ ∞

−∞
3C exp(8lC),) (A, C) (14)

The spectral function is plotted in Fig. 3 for a temperature of 408 MeV. We observe that the
spectral function shows asymmetric structure around the peak position [16]. The integration of
Eq. (14) can be done exactly [17]. Near the peak d(A, l) can be approximated by a Lorentzian,

d(A, l) ≈
√

2
c

+8<(A, ))
(+A4 (A, )) − l)2 + +8<(A, ))2

|+A4 (A, )) − l|, +8<(A, )) � ).

(15)

This is expected as we already assumed the existence of the limit in Eq. (4).
Away from the peak the structure differs from a Lorentzian:

d(A, l) ∼ (l −+A4 (A, )))
−
(
1− V+8< (A,) )

c

)
l −+A4 (A, )) � ), (16)

∼ 4−V (+A4 (A ,) )−l) (+A4 (A, )) − l)
−
(
1− V+8< (A,) )

c

)
l −+A4 (A, )) � −).

The exponential suppression at the low-l side of the peak is needed for Eq. (3) to be integrable.

5. Comparison with singlet Free Energy

The singlet free energy �B is another widely studied quantity [11, 18, 19] at finite temperature,
which is defined in Coulomb gauge and given by,

�B (A, )) = −) log(,) (A, V)). (17)

In leading order HTL perturbation theory, the singlet free energy is exactly equal to the real part of
the potential in Eq. (2). On the left panel of Fig. 4, the singlet free energy and the real part of the

6
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Figure 4: (Left) The singlet free energy �B (A, )) (black points) and real part of potential+A4 (A, )) as function
of A . (Right) (+A4 (A, )) − �B (A, )))/) plotted as a function of A) .

potential obtained on the lattice have been compared. We see that even non-perturbatively these two
quantities come close to each other. However on the right panel of Fig. 4 , when we have plotted the
difference +A4 (A, )) − �B (A, )) we do see a finite difference between these two quantities. As we
increase the temperature the difference however is becoming smaller, as at very high temperatures
both of these quantities should approach to their leading order HTL value.

6. Conclusion

We have computed the complex static quark-antiquark potential at finite temperature using
a HTL motivated approach. We have found that data near g ∼ V/2 is consistent with the HTL
parametrization. The extracted real part of the potential shows screening above the crossover
temperature, whereas the imaginary part is increasing with both distance and temperature. We have
also observed that the real part of the potential is very close to the singlet free energy, however,
a small non-zero difference exists between them. We have also computed the structure of the
dominant peak of the spectral function, which shows an asymmetric structure away from the peak
and near the peak, the spectral function can be approximated by a Lorentzian.
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