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1. Introduction

Numerical lattice QCD calculations have been applied to several multi-hadron observables,
including two-meson, meson-baryon and baryon-baryon scattering amplitudes as well as one-to-two
decay and transition amplitudes and even three-to-three scattering amplitudes; see Refs. [2–10] for
reviews.

The standard methodology for extracting multi-hadron observables in such calculations is to
use the finite system size (the finite volume) as a probe of the infinite-volume physics. The finite
spatial volume, often a periodic cubic geometry with side-length L, results in a discrete energy
spectrum in place of the continuum of infinite-volume scattering states. These discrete energy
levels retain information about the underlying scattering amplitudes, which can be extracted using
field theoretic methods. A general formulation of this idea was provided in Refs. [11, 12] for a
system of two identical spin-zero particles with zero total momentum in the finite-volume frame.
This method has since then been extended to include two-particle systems with multiple coupled
channels, non-degenerate and non-identical particles, non-zero total momentum, and spin [13–22].
The approach has also been extended to systems with three particles in the initial or final state
[23–40].

In these proceedings, we summarize analytic relations for the two- and three-particle finite-
volume energies of a systemwhose low-energy degrees of freedom are weakly interacting, e.g. max-
imal isospin pions or kaons in QCD. The results given here focus on the low-energy regime in which
only a single channel of scalar or pseudo-scalar particles can propagate and assume a Z2 symmetry
that prevents coupling between even- and odd-particle-number states. The results hold for any value
of total momentum P in the finite-volume frame but require that the corresponding non-interacting
states are not accidentally degenerate. The role of accidental degeneracy for two- and three-particle
states is discussed in detail in the full manuscripts [1, 41].

We envision a number of applications for these results, including building intuition on how
interactions shift finite-volume energies and exploring the convergence of contributions fromhigher-
partial waves. Additionally, the results can be used to guide automated root finders of the full two-
and three-particle quantization conditions. The results are especially useful in the three-particle
sector, where implementing the full quantization condition is less straightforward.

In the following sectionwe review the general formalism and introduce the expansion performed
in this work. Then, in Secs. 3 and 4, we present analytic results for two- and three-particle states
respectively, before briefly concluding.

2. Formalism

Our goal is to derive analytic expressions for finite-volume two- and three-particle energies by
expanding about the non-interacting limit. We denote these energies by En(L), where L is the box
length (assuming a cubic, periodic geometry) and n is a collective index given by n = {n, P,Λ}.
Here the integer n denotes the nth excited state in the large volume limit, P = (2π/L)d is the total
spatial momentum, with d a three-vector of integers, and Λ is the relevant finite-volume irreducible
representation (irrep). In the limit of vanishing interactions, the energy can be expressed as the sum
of finite-volume, single-particle energies.
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For example, the two-particle non-interacting energy, for a channel of identical particles with
mass m, is given by

E (0)n = ωνn + ωd−νn , (1)

where νn is a three-vector of integers representing the state and

ωn =
√

m2 + (2π/L)2n2 . (2)

Similarly the non-interacting three-particle energy can be written as

E (0)n = ωνn,1 + ωνn,2 + ωd−νn,1−νn,2 , (3)

where the state is now represented by two three-vectors, νn,1 and νn,2.
The key tool for deriving the dependence of finite-volume energies on infinite-volume scattering

parameters is the quantization condition. For the present case, in which two- and three-particle
states are decoupled by a symmetry, each of these sectors has its own quantization condition. Letting
N denote the number of particles, the general structure matches between the two cases and can be
written as [11, 13, 15, 25]

det
Λµ

[
PΛ,µ ·

(
1 + I[N ]F[N ]

)
· PΛ,µ

] ����
E =En

= 0 , (4)

where F[N ] is an L-dependent matrix and I[N ] is an infinite-volume matrix. F[N ] depends on both
the energy and momentum in the finite-volume frame, but I[N ] depends only on the Center-of-
Momentum (CoM) frame energy

E? =
√

E2 − P2 . (5)

In the two-particle case, F[2] is a known geometric function and I[2] is the two-to-two scattering
amplitude. For three particles, by contrast, F[3] is more complicated and depends on geometric
functions as well as the two-particle scattering dynamics, and I[3] is a scheme-dependent three-
particle K-matrix whose relation to the physical scattering amplitude is known.1 The remaining
quantity appearing in the quantization condition is PΛ,µ, a projector that restricts to the irrep of
interest in the relevant finite-volume group. The definition of the matrix space also depends on
the value of N . The quantization conditions used here hold only in the range of CoM energies for
which a single flavor channel can go on-shell and only up to corrections scaling as e−mL .

Equation (4) can be used in a number of ways in practice. The simplest case arises in the two-
particle sector, in a range of energies for which only a single flavor channel can contribute. Even in
this case, the quantization condition involves formally infinite-dimensional matrices on the space
of all possible two-particle angular momenta contributing to a given finite-volume irrep. In many
practical lattice calculations, the flavor quantum numbers and the precision of lattice-determined
energies are such that the systematic uncertainty of neglecting higher angular momenta is below the
statistical uncertainty, so that the matrices can be truncated to a single partial wave. In such cases

1One can also use a version of the two-particle quantization condition in which I[2] is the two-particle K-matrix and
F[2] is modified accordingly to leave the predicted energies unchanged. See the discussion around Eq. (98) of Ref. [25].
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the two-particle scattering amplitude represents a single unknown at each value of CoM energy,
and each finite-volume energy gives a determination without any need to parametrize.

The situation is more complicated whenever multiple two-particle channels can contribute
and also in the three-particle sector. In such cases a parametrization of at least some of the
scattering observables is often unavoidable. The optimal approach here is to identify a wide range
of parametrizations and to use lattice-determined energies to identify the subset that can describe
the data. The spread in successful descriptions then gives a systematic uncertainty on the extracted
scattering observable. Also in this approach a truncation to a finite angular-momentum space is
required.

The analytic expansions of this work are complementary to the work flows sketched above.
While the expansion necessarily also requires a parametrization of the scattering observables, once
this is fixed, then the truncation is automatically given by a power-counting scheme. As we describe
in Ref. [1], power-countings also arise for which an infinite set of angular momenta contribute at
each order. We now turn to particle-number-specific details of our expansions, beginning with the
two-particle sector.

3. Two-Particle Results

The explicit expressions for I[2] and F[2] for two identical particles, derived in Refs. [11–
13, 15], are

I
[2]
`,m;`′,m′ =M`,m;`′,m′(E?) ,

= δ`′`δm′m
16πE?

p? cot δ`(p?) − ip?
,

(6)

F[2]
`′m′,`m

(E, P, L) =
1
2

lim
α→0+

[
1
L3

∑
k

−

∫
k

]
Ỳ ′m′(k

?)Y∗`m(k
?)e−α(k

?2−p?2)/(p?)`+`
′

2ωk2ωP−k (E − ωk − ωP−k + iε)
, (7)

where E? and p? are the energy and relative momentum in the CoM frame, related via E?2 =

4(p?2 + m2), δ` is the scattering phase shift and `,m are angular-momentum indices. We have also
introducedωk =

√
k2 + m2 as the on-shell time component of the four-vector kµ; we rely on context

to distinguish the dimensionful and dimensionless subscripts in ω. The vector k? is defined by
boosting kµ to the CoM frame, i.e. with boost velocity −P/E . The angular momentum is encoded
via Ỳ m(x) =

√
4π |x |`Ỳ m(x̂) where Ỳ m is a standard spherical harmonic.

As discussed above, to performageneral expansion ofEn(L), one requires a specific parametriza-
tion ofM(E?), together with a power-counting scheme. The scheme assigns a power of the expan-
sion parameter ε to each parameter within the amplitude, such that ε → 0 implies thatM(E?) → 0
and En → E (0)n . The best choice of power-counting depends on the details of the system, but a
useful expansion can only be performed if the low-energy scattering parameters, expressed as a
positive power of length, are small in units of the box size. Again, see Ref. [1] for more details.

For this work, we parametrizeM using the threshold expansion

p? cot δ`(p?) = −
1
a`

(
1
p?

)2` [
1 −

r`a`
2

p?2 +O(p?4)

]
, (8)
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where a`, r` are the higher partial-wave generalizations of the scattering length, a0, and effective
range, r0. We assign a power-countingwhere a` = O(ε2`+1), and assume that parametersmultiplying
higher powers of (p?)2 are ε-suppressed. With this scaling, only the S-wave scattering length a0

enters the first few orders of the interacting energy. Thus, if we work only to these orders, the
quantization condition in whichM(E?) is set to zero for ` > 0 can be used.

Restricting our attention to S-wave only and noting that in this case, the only irrep in which
shifts occur is the trivial irrep, Eq. (4) becomes

p? cot δ0(p?) = f (q, d, L) , (9)

where the function f is defined by

f (q, d, L) ≡ −16πE?Re
[
F[2]00,00(E, P, L)

]
=

1
πL

1
γ(qn, d, L)

∑
n

T(n |qn, d, L) , (10)

where γ = E/E? is the Lorentz boost factor and q is the dimensionless relative momentum in the
CoM, defined via (p?)2 = (2π/L)2q2. Additionally, T is a summand function that can be derived
from the definition of F[2] and is presented in detail in Ref. [1].2

The expansion is conveniently performed by substituting

qn(L)2 = q(0)n (L)
2 +

∞∑
j=1

ε j ∆
(j)

q[n]
(L) , (11)

together with Eq. (8) into Eq. (9) and solving order by order in ε . Once the values of ∆(j)
q[n]

are found
for a given set of j, these can be converted to an expression for En(L) via the relation

qn(L)2 =
(

L
2π

)2 [
En(L)2

4
− m2

]
. (12)

The resulting expansion of f (q, d, L) is complicated by the poles arising at non-interacting
finite-volume energies. To address this, we define S2,n as the set of three-vectors entering the sum
in Eq. (7) that contribute to the pole at E (0)n :

S2,n =
{
n ∈ Z3�� E (0)n = ωn + ωd−n

}
. (13)

Breaking the infinite sum into elements of S2,n and elements not in S2,n, we write

f (q, d, L) =
1
πL

1
γ(qn, d, L)

( ∑
n∈S2,n

T(n |qn, d, L)︸                   ︷︷                   ︸
O(1/ε )

+
∑

n<S2,n

T(n |qn, d, L)︸                  ︷︷                  ︸
O(1)

)
, (14)

where the indicated scaling in the underbrackets follows from substituting Eq. (11). For example,
the leading-order expansion in the case of P = 0 is∑

n∈S2,n

T(qn, d, L) = −
gn

ε∆
(1)
q[n]

+ O(ε0) , (15)
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Figure 1: The difference between the full finite-volume energy, which is found by numerically solving
Eq. (9), and the analytic expression given Eq. (16). We carry out the comparison in three different frames,
using the shorthand that P = [dxdydz], and for the ground and first excited state. For each state, we subtract
both the leading-order (LO) and the next-to-leading-order (NLO) energies from the full result, for three
different values of the scattering length as indicated. As expected, the residual is smaller when the NLO
results are used and smaller values of ma0 also give smaller residuals.

where gn is the degeneracy factor, given by the size of S2,n.
This completes the construction needed for the expansion and we now give a sample of results.

For example, the resulting prediction for En for general P at next-to-leading (NLO) order is

En(L) = E (0)n (L) + gn
E (0)n (L)

4ωνnωd−νn

8πa0

γ
(0)
n L3

+ O(ε2) , (16)

where we do not explicitly include ε in the NLO term. To verify this expansion, in Fig. 1 we compare
it to the full finite-volume energy found by numerically solving Eq. (9), with the parameterization
of δ0(p?) given in Eq. (8) (with r0 = 0).

Higher-order corrections can be found by expanding f (q, d, L) and p? cot δ0(p?), and thereby
Eq. (9) to higher orders in ε and tuning ∆(k)

q[n]
such that the vanishing condition is satisfied. The

resulting expressions are complicated by a proliferation of terms and the appearance of geometric
constants from the infinite sums within f . In addition, for the case of non-zero P, the higher-order
coefficients within f (q, d, L) are mL-dependent. A relatively simple expression can be given for
the next-to-next-to-leading order excited state energy in the case of P = 0

En(L) = E (0)n (L) + gn
E (0)n (L)

4ωνnωd−νn

8πa0

L3 + gn
8a2

0

E (0)n (L)L4

(
Bn,0 −

4π2gn

E (0)n (L)2L2

)
+ O(ε3) , (17)

2Though the symbol is not explicitly introduced, it can be inferred from Eq. (2.26) of Ref. [1].
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where the coefficient Bn,0 is given by

Bn,0 = lim
s→−1

∑
n<Sn

[
q(0)2n − n2

]s
, (18)

and the ultraviolet divergence is regulated by analytic continuation in s. These results match the
previous work of Refs. [11, 12, 43–45] where comparable.

The results here are only valid for finite-volume energies for which no accidental degeneracy
occurs. See Ref. [1] for the treatment of accidentally degenerate states, which requires the inclusion
of higher partial waves. We also note that the NLO energy shift can also be calculated in a power-
counting scheme where no higher partial wave is suppressed and thus I[2] and F[2] are not truncated
to finite-dimensional matrices. Again, this is described in the full manuscript.

4. Three-Particle Results

An approach similar to that summarized in the previous section can also be applied to the
three-particle quantization condition. For this system, both I[3] and F[3] have a significantly more
complicated form and also the matrix space is more complicated. In particular, I[3] is given by the
divergence-free three-particle K-matrix, denoted Kdf,3, and F[3] is given by

F[3] =
1
L3

1
2ω

[
F
3
− F

1
F + G +K−1

2
F

]
, (19)

whereω is a matrix of single-particle energies,K2 is a two-particle K-matrix, with a known relation
to the scattering amplitude, and F and G are finite-volume functions. These expressions were first
introduced in Ref. [25]. Rather than being matrices only on the two-particle angular momentum
space `′m′, `m, as in the previous section, these matrices now act on the Kronecker product of this
space together with a finite-volume spectator momentum k = (2π/L)n, abbreviated k. The full
index space is thus denoted k ′, `′,m′; k, `,m.

For example, G is given by

Gk′,`′,m′; k,`,m ≡
1

2ωkL3

(
1

q?
k′

)`′ Ỳ ′,m′(k
?)Y∗`,m(k

′?)H(k, k ′)

2ωP−k−k′ (E − ωk′ − ωk − ωP−k−k′ + iε)

(
1

q?
k

)`
, (20)

where k? is defined by boosting kµ = (ωk, k) with boost velocity βk′ ≡ −(P − k ′)/(E − ωk′), and
k ′? is defined with primed and unprimed objects exchanged everywhere. Here q?

k
is the relative

momentum in the CoM frame for the two-particle system where the particle with momentum k is
the spectator:

(q?k )
2 ≡ E?2

2,k/4 − m2 , E?2
2,k = (E − ωk )

2 − (P − k)2 . (21)

In slight notational tension to the two-particle case, this is a dimensionful quantity, following the
convention of Ref. [25]. Lastly, H(k, k ′) is a smooth cut-off function that vanishes for E?2

2,k < 0
or E?2

2,k′ < 0, and is equal to unity for E?2
2,k > 4m2 and E?2

2,k′ > 4m2. More details are given, for
example, in Refs. [25, 42].
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ν1 ν2 ν3

S3,𝔫

Three-Particle System

Collection of Two-Particle 
Subsystems

ν3ν1

ν2ν1
ν2

ν3

S2,𝔫12

S2,𝔫13

S2,𝔫23

Figure 2: Decomposition of a three-particle system (with no accidental degenreacy) into a collection of three
two-particle subsystems. For each set S2,ni , the omitted particle is called the spectator. This partitioning
forms the backbone of our expansion of the three-particle quantization condition.

To find the NLO energy, we make use of three key facts, all of which are expanded upon in the
forthcoming manuscript [41]. The first is that the NLO energy is found by solving for the pole in
F[3], which occurs when

det
[
F + G +K−1

2
]
= 0 . (22)

This statement was already demonstrated in Ref. [42] for the ground state in the case of P = 0. Note
that this immediately implies that the NLO three-particle energy depends only on the two-particle
scattering dynamics.

Second we note that, as in the two-particle case, the matrices F and G have poles at the
non-interacting three-particle energies. This can be seen explicitly in the definition of G given in
Eq. (20). This motivates the introduction of the three-particle analog of S2,n:

S3,n =

{
n1 ∈ Z

3
����E (0)3,n −

(
ωn1 + ωn2 + ωd−n1−n2

)
= 0 ∀ n2 ∈ Z

3
}
, (23)

where E (0)3,n is the three-particle, non-interacting energy of interest, see Eq. (3). Note that, as long
as the three-particle state is non-degenerate as we assume here, then S3,n is equal to the union of at
most three distinct two-particle sets, S2,ni . This is shown schematically in Fig. 2.

The third key fact concerns the textures of the leading order expansions of the matrices K2,
F and G. This relies on expanding the matrices following the same power-counting scheme as
above with the two-particle scattering length a0 = O(ε) and with E3,n − E (0)3,n = O(ε).3 For this
power-counting, only the S-wave contributes at NLO and the matrices can be truncated to the space
of spectator momenta only: k ′, k. Keeping the O(1/ε) contributions from K−1

2 , F and G one can
classify all possible matrix textures, on this space, based on the particular three-particle state of
interest. In particular, K−1

2 and F are always diagonal and G has one of five textures, summarized

3In the three-particle case we take the expansion directly in terms of E3,n, since a unqiue relative momentum cannot
be defined with three particles.
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by

G ∼


©«
♦[na] �[gna/2] �[gna/2]
�[gnb/2] ♦[nb] �[gnb/2]
�[gnc/2] �[gnc/2] ♦[nc]

ª®®¬ ,
(
♦[na] �[gna]

�[gnb/2] �[gnb/2]

)
,

(
♦[na] �[1]
�[1] �[1]

)
, �[gna], �[1]

 ,
(24)

where the symbols are defined as

♦[n] : square matrix of all zeros, with dimensions n × n ,

�[n] : rectangular matrix of zeros and ones, with n non-zero entries per row , (25)

and gni is the size of set S2,ni . Additionally, ni is the number of vectors in S3,n that are related to
each other by elements of the point group defined by P. These vectors play the role of the spectator
particle when defining the set S2,ni .

Combining the three key facts we have summarized, it is possible to show that the quantization
condition of Ref. [25] predicts that the NLO energy for a three-particle state is given by

E3,n = E (0)3,n +

3∑
i=1
∆
(1)
E[2,ni ]

+ O(ε2) , ∆
(1)
E[2,n] ≡ gn

E (0)n (L)
4ωνnωd−νn

8πa0

γ
(0)
n L3

, (26)

where ∆(1)
E[2,n] is recognized as the leading-order energy shift in the two-particle system, given in

Eq. (16).
The interpretation of this result is straightforward: the leading-order energy shift of any non-

degenerate three-particle system is the sum of leading-order energy shifts in all the two-particle
subsystems. This highly intuitive result has been derived for the ground state in the P = 0 case
in Refs. [42–46], but the result for all excited states and all moving frames is new to this work.
A comparison of this generic expression to specific excited state results derived using a different
formalism [47, 48], together with the full proof, is given in a manuscript in preparation [41].

5. Conclusions

In these proceedings, we have summarized analytic relations for two- and three-particle finite-
volume energies of weakly interacting systems, focusing on the low-energy regime in which only
a single channel of scalar or pseudo-scalar particles can propagate. The relations are valid for any
excited state, provided the latter does not have an accidental degeneracy, and for any value of the
total momentum. The work summarized here is described in more detail in Refs. [1, 41].

The most significant result presented in these proceedings is that the leading shift in a generic,
excited state three-particle energy is given by summing the shifts associated to all two-particle
pairs, as summarized in Eq. (26). This holds provided that no accidental degeneracies are present
in the state of interest. Although the result is very intuitive, deriving it from the full three-particle
quantization condition is highly non-trivial. We also view this as another cross-check on the
formalism itself, though to make this solid an independent derivation for a generic three-particle
excited state is required. This could be done, for example, by explicitly considering the excited states

9
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in λφ4 theory, as was done in Ref. [45] for the ground state. Additional future work, going beyond
the manuscript in preparation, includes treating multiple channels and channels with non-identical
and non-degenerate particles.

Acknowledgments

We thank Fernando Romero-López and Steve Sharpe for useful discussions. D.M.G. would
additionally like to thankMichael Wagman for useful discussions. The work of M.T.H. is supported
by UK Research and Innovation Future Leader Fellowship MR/T019956/1.

References

[1] D. M. Grabowska and M. T. Hansen, Analytic expansions of multi-hadron finite-volume
energies: I. Two-particle states, 2110.06878.

[2] R. A. Briceño, J. J. Dudek and R. D. Young, Scattering processes and resonances from
lattice QCD, Rev. Mod. Phys. 90 (2018) 025001 [1706.06223].

[3] J. Bulava, Meson-Nucleon Scattering Amplitudes from Lattice QCD, AIP Conf. Proc. 2249
(2020) 020006 [1909.13097].

[4] USQCD collaboration, W. Detmold, R. G. Edwards, J. J. Dudek, M. Engelhardt, H.-W. Lin,
S. Meinel et al., Hadrons and Nuclei, Eur. Phys. J. A 55 (2019) 193 [1904.09512].

[5] R. G. Edwards, Hadron Spectroscopy, PoS LATTICE2019 (2020) 253.

[6] RBC, UKQCD collaboration, N. H. Christ, K → ππ decay, ε′ and the RBC-UKQCD kaon
physics program, J. Phys. Conf. Ser. 1526 (2020) 012012.

[7] S. Aoki and T. Doi, Lattice QCD and baryon-baryon interactions: HAL QCD method, Front.
in Phys. 8 (2020) 307 [2003.10730].

[8] M. T. Hansen and S. R. Sharpe, Lattice QCD and Three-particle Decays of Resonances, Ann.
Rev. Nucl. Part. Sci. 69 (2019) 65 [1901.00483].

[9] A. Rusetsky, Three particles on the lattice, PoS LATTICE2019 (2019) 281 [1911.01253].

[10] M. Mai, M. Döring and A. Rusetsky, Multi-particle systems on the lattice and chiral
extrapolations: a brief review, Eur. Phys. J. ST 230 (2021) 1623 [2103.00577].

[11] M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field
Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153.

[12] M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl.
Phys. B 354 (1991) 531.

[13] K. Rummukainen and S. A. Gottlieb, Resonance scattering phase shifts on a nonrest frame
lattice, Nucl. Phys. B 450 (1995) 397 [hep-lat/9503028].

10

https://arxiv.org/abs/2110.06878
https://doi.org/10.1103/RevModPhys.90.025001
https://arxiv.org/abs/1706.06223
https://doi.org/10.1063/5.0008643
https://doi.org/10.1063/5.0008643
https://arxiv.org/abs/1909.13097
https://doi.org/10.1140/epja/i2019-12902-4
https://arxiv.org/abs/1904.09512
https://doi.org/10.22323/1.363.0253
https://doi.org/10.1088/1742-6596/1526/1/012012
https://doi.org/10.3389/fphy.2020.00307
https://doi.org/10.3389/fphy.2020.00307
https://arxiv.org/abs/2003.10730
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.1146/annurev-nucl-101918-023723
https://arxiv.org/abs/1901.00483
https://doi.org/10.22323/1.363.0281
https://arxiv.org/abs/1911.01253
https://doi.org/10.1140/epjs/s11734-021-00146-5
https://arxiv.org/abs/2103.00577
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(95)00313-H
https://arxiv.org/abs/hep-lat/9503028


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
0
3

Analytic Expansions of Two- and Three-Particle Excited-State Energies Dorota M. Grabowska

[14] S. He, X. Feng and C. Liu, Two particle states and the S-matrix elements in multi-channel
scattering, JHEP 07 (2005) 011 [hep-lat/0504019].

[15] C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Finite-volume effects for two-hadron states in
moving frames, Nucl. Phys. B727 (2005) 218 [hep-lat/0507006].

[16] M. Lage, U.-G. Meißner and A. Rusetsky, A Method to measure the antikaon-nucleon
scattering length in lattice QCD, Phys. Lett. B681 (2009) 439 [0905.0069].

[17] V. Bernard, M. Lage, U. G. Meißner and A. Rusetsky, Scalar mesons in a finite volume,
JHEP 01 (2011) 019 [1010.6018].

[18] Z. Fu, Rummukainen-Gottlieb’s formula on two-particle system with different mass, Phys.
Rev. D85 (2012) 014506 [1110.0319].

[19] M. T. Hansen and S. R. Sharpe, Multiple-channel generalization of Lellouch-Lüscher
formula, Phys. Rev. D86 (2012) 016007 [1204.0826].

[20] R. A. Briceño and Z. Davoudi, Moving multichannel systems in a finite volume with
application to proton-proton fusion, Phys. Rev. D88 (2013) 094507 [1204.1110].

[21] P. Guo, J. Dudek, R. Edwards and A. P. Szczepaniak, Coupled-channel scattering on a torus,
Phys. Rev. D88 (2013) 014501 [1211.0929].

[22] R. A. Briceño, Two-particle multichannel systems in a finite volume with arbitrary spin,
Phys. Rev. D89 (2014) 074507 [1401.3312].

[23] R. A. Briceño and Z. Davoudi, Three-particle scattering amplitudes from a finite volume
formalism, Phys. Rev. D87 (2013) 094507 [1212.3398].

[24] K. Polejaeva and A. Rusetsky, Three particles in a finite volume, Eur. Phys. J. A48 (2012) 67
[1203.1241].

[25] M. T. Hansen and S. R. Sharpe, Relativistic, model-independent, three-particle quantization
condition, Phys. Rev. D 90 (2014) 116003 [1408.5933].

[26] M. T. Hansen and S. R. Sharpe, Expressing the three-particle finite-volume spectrum in terms
of the three-to-three scattering amplitude, Phys. Rev. D92 (2015) 114509 [1504.04248].

[27] R. A. Briceño, M. T. Hansen and S. R. Sharpe, Relating the finite-volume spectrum and the
two-and-three-particle S matrix for relativistic systems of identical scalar particles, Phys.
Rev. D95 (2017) 074510 [1701.07465].

[28] H.-W. Hammer, J.-Y. Pang and A. Rusetsky, Three-particle quantization condition in a finite
volume: 1. The role of the three-particle force, JHEP 09 (2017) 109 [1706.07700].

[29] H. W. Hammer, J. Y. Pang and A. Rusetsky, Three particle quantization condition in a finite
volume: 2. general formalism and the analysis of data, JHEP 10 (2017) 115 [1707.02176].

11

https://doi.org/10.1088/1126-6708/2005/07/011
https://arxiv.org/abs/hep-lat/0504019
https://doi.org/10.1016/j.nuclphysb.2005.08.029
https://arxiv.org/abs/hep-lat/0507006
https://doi.org/10.1016/j.physletb.2009.10.055
https://arxiv.org/abs/0905.0069
https://doi.org/10.1007/JHEP01(2011)019
https://arxiv.org/abs/1010.6018
https://doi.org/10.1103/PhysRevD.85.014506
https://doi.org/10.1103/PhysRevD.85.014506
https://arxiv.org/abs/1110.0319
https://doi.org/10.1103/PhysRevD.86.016007
https://arxiv.org/abs/1204.0826
https://doi.org/10.1103/PhysRevD.88.094507
https://arxiv.org/abs/1204.1110
https://doi.org/10.1103/PhysRevD.88.014501
https://arxiv.org/abs/1211.0929
https://doi.org/10.1103/PhysRevD.89.074507
https://arxiv.org/abs/1401.3312
https://doi.org/10.1103/PhysRevD.87.094507
https://arxiv.org/abs/1212.3398
https://doi.org/10.1140/epja/i2012-12067-8
https://arxiv.org/abs/1203.1241
https://doi.org/10.1103/PhysRevD.90.116003
https://arxiv.org/abs/1408.5933
https://doi.org/10.1103/PhysRevD.92.114509
https://arxiv.org/abs/1504.04248
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1103/PhysRevD.95.074510
https://arxiv.org/abs/1701.07465
https://doi.org/10.1007/JHEP09(2017)109
https://arxiv.org/abs/1706.07700
https://doi.org/10.1007/JHEP10(2017)115
https://arxiv.org/abs/1707.02176


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
0
3

Analytic Expansions of Two- and Three-Particle Excited-State Energies Dorota M. Grabowska

[30] M. Mai and M. Döring, Three-body Unitarity in the Finite Volume, Eur. Phys. J. A53 (2017)
240 [1709.08222].

[31] R. A. Briceño, M. T. Hansen and S. R. Sharpe, Three-particle systems with resonant
subprocesses in a finite volume, Phys. Rev. D99 (2019) 014516 [1810.01429].

[32] R. A. Briceño, M. T. Hansen and S. R. Sharpe, Numerical study of the relativistic three-body
quantization condition in the isotropic approximation, Phys. Rev. D98 (2018) 014506
[1803.04169].

[33] A. W. Jackura, S. M. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni
et al., Equivalence of three-particle scattering formalisms, Phys. Rev. D100 (2019) 034508
[1905.12007].

[34] T. D. Blanton, F. Romero-López and S. R. Sharpe, Implementing the three-particle
quantization condition including higher partial waves, JHEP 03 (2019) 106 [1901.07095].

[35] R. A. Briceño, M. T. Hansen, S. R. Sharpe and A. P. Szczepaniak, Unitarity of the
infinite-volume three-particle scattering amplitude arising from a finite-volume formalism,
Phys. Rev. D100 (2019) 054508 [1905.11188].

[36] F. Romero-López, S. R. Sharpe, T. D. Blanton, R. A. Briceño and M. T. Hansen, Numerical
exploration of three relativistic particles in a finite volume including two-particle resonances
and bound states, JHEP 10 (2019) 007 [1908.02411].

[37] T. D. Blanton and S. R. Sharpe, Alternative derivation of the relativistic three-particle
quantization condition, 2007.16188.

[38] T. D. Blanton and S. R. Sharpe, Equivalence of relativistic three-particle quantization
conditions, 2007.16190.

[39] M. T. Hansen, F. Romero-López and S. R. Sharpe, Generalizing the relativistic quantization
condition to include all three-pion isospin channels, JHEP 07 (2020) 047 [2003.10974].

[40] T. D. Blanton and S. R. Sharpe, Relativistic three-particle quantization condition for
nondegenerate scalars, 2011.05520.

[41] D. M. Grabowska and M. T. Hansen, Analytic expansions of multi-hadron finite-volume
energies: II. Three-Particle States, To Appear .

[42] M. T. Hansen and S. R. Sharpe, Threshold expansion of the three-particle quantization
condition, Phys. Rev. D 93 (2016) 096006 [1602.00324].

[43] K. Huang and C. Yang, Quantum-mechanical many-body problem with hard-sphere
interaction, Phys. Rev. 105 (1957) 767.

[44] S. R. Beane, W. Detmold and M. J. Savage, n-Boson Energies at Finite Volume and
Three-Boson Interactions, Phys. Rev. D 76 (2007) 074507 [0707.1670].

12

https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1140/epja/i2017-12440-1
https://arxiv.org/abs/1709.08222
https://doi.org/10.1103/PhysRevD.99.014516
https://arxiv.org/abs/1810.01429
https://doi.org/10.1103/PhysRevD.98.014506
https://arxiv.org/abs/1803.04169
https://doi.org/10.1103/PhysRevD.100.034508
https://arxiv.org/abs/1905.12007
https://doi.org/10.1007/JHEP03(2019)106
https://arxiv.org/abs/1901.07095
https://doi.org/10.1103/PhysRevD.100.054508
https://arxiv.org/abs/1905.11188
https://doi.org/10.1007/JHEP10(2019)007
https://arxiv.org/abs/1908.02411
https://arxiv.org/abs/2007.16188
https://arxiv.org/abs/2007.16190
https://doi.org/10.1007/JHEP07(2020)047
https://arxiv.org/abs/2003.10974
https://arxiv.org/abs/2011.05520
https://doi.org/10.1103/PhysRevD.93.096006
https://arxiv.org/abs/1602.00324
https://doi.org/10.1103/PhysRev.105.767
https://doi.org/10.1103/PhysRevD.76.074507
https://arxiv.org/abs/0707.1670


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
0
3

Analytic Expansions of Two- and Three-Particle Excited-State Energies Dorota M. Grabowska

[45] M. T. Hansen and S. R. Sharpe, Perturbative results for two and three particle threshold
energies in finite volume, Phys. Rev. D 93 (2016) 014506 [1509.07929].

[46] F. Müller, T. Yu and A. Rusetsky, Finite-volume energy shift of the three-pion ground state,
Phys. Rev. D 103 (2021) 054506 [2011.14178].

[47] J.-Y. Pang, J.-J. Wu, H. W. Hammer, U.-G. Meißner and A. Rusetsky, Energy shift of the
three-particle system in a finite volume, Phys. Rev. D 99 (2019) 074513 [1902.01111].

[48] F. Romero-López, A. Rusetsky, N. Schlage and C. Urbach, Relativistic N-particle energy
shift in finite volume, JHEP 02 (2021) 060 [2010.11715].

13

https://doi.org/10.1103/PhysRevD.93.014506
https://arxiv.org/abs/1509.07929
https://doi.org/10.1103/PhysRevD.103.054506
https://arxiv.org/abs/2011.14178
https://doi.org/10.1103/PhysRevD.99.074513
https://arxiv.org/abs/1902.01111
https://doi.org/10.1007/JHEP02(2021)060
https://arxiv.org/abs/2010.11715

	Introduction
	Formalism
	Two-Particle Results
	Three-Particle Results
	Conclusions

