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Instanton-dyons are topological solutions of YM equations at finite temperatures. Their semiclas-
sical ensembles were studied by a number of methods, including direct Monte-Carlo simulation,
for SU(2) and SU(3) theories, with and without fermions. We present these results and compare
them with those from lattice studies. We also consider two types of QCD deformations. One is by
adding operators with powers of the Polyakov line, affecting deconfinement. Another is changing
quark periodicity condition, affecting the chiral transition. Another paper is using inverse direc-
tion, from lattice configurations (with realistic quark masses) looking at zero and near-zero Dirac
modes. It turned out that those revealing the shape of the modes, In excellent agreement with
analytic instanton-dyon theory. Summarizing both we conclude that QCD phase transitions are
well described in terms of such semiclassical objects.
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Figure 1: Map of gauge topology, explanation in the text.

1. Brief overview of gauge topology

Con f inement phenomenon (left blue region in Fig.1) was first related with center vortices,
associated with phase π for a quark going around it and thus changing the sign of the Wilson line
it may pierce. Two such vortices combined together lead to a singularity with phase 2π, shown
by white arrow, known as the Dirac string. Their ends are identified as magnetic monopoles (blue
disks). Confinement is their Bose-Einstein condensation, perhaps the most physical signature of
this phenomenon.

The right yellow region of Fig.1 is associated with another major nonperturbative phenomenon,
chiral symmetry breaking. Pink disk indicate instantons, 4D solitons in Euclidean space-time.
Fermions in its field have zero modes, elevating each instanton into t’ Hooft multi-fermion operator.
Four black arrows correspond to the case of two quark flavors, u, d. The resulting 4-fermion vertex
is similar to Nambu-Jona-Lasinio hypothetical interaction, and also breaks spontanously SU (Nf )a
chiral symmetry provided the instanton density is suffucuently large.

At finite temperature the Polyakov line has certain nonzero expectation values, or holonomies
µi (T ) (see below). Instanton solution amended by such asymptotics of A0 fields splits into instanton
constituents, known as instanton-dyons or instanton-monopoles1 . Like instantons, they have
topological charges. Unlike instantons, those are not quantized to integer Q, which is possible
because they are connected by Dirac strings due to their magnetic charges. Ensemble of those will
be the main focus of this talk.

1Both names were criticized: they are neither the dyons of Schwinger nor monopoles of Dirac, but Euclidean self-dual
objects, with equal E and B up to a sign. Perhaps a new name, emphasizing their Euclidean nature, is needed: can it e.g.
be instantino?
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Last but not least is phenomenon of Poisson duality, a technical observation relating partition
functions in terms of monopoles and in terms of instanton-dyons. Their equality rather bring to
mind two other great names, as two partition functions correspond to dynamical descriptions a la
Hamilton and Lagrange, respectively.

The detailed discussion of all of that, plus discussion of QCD flux tubes and holographic QCD
etc, one can find in my recent book [1].

2. Instanton-dyons on the lattice

Here there is no place to introduce Kraan-van Baal solution for an instanton, containing Nc

instanton-dyons, or formalizm leading to zero modes. Let me just remind that eigenvalues of
Polyakov line, designated as µi (T ), i = 1..Nc can be pictured as locations on an unit circle. Their
differences νi = µI+1 − µi are lengths of corresponding fractions of the circle, also giving the
fractions the dyon actions make of the instanton action Si = νiS where

S = 8π2/g2 = (
11
3

Nc −
2
3

Nf )log(
T
ΛQCD

)

Another fact is that if quarks are given different periodicity phases z f , f = 1..Nf over the Matsubara
circle, the normalizable physical zero mode belongs to the dyon in which sector z f belongs, namely
z f ∈ [µi, µi+1]. So, using different z f one can see all dyon types.

Since this text is written for proceedings of a lattice conference, let me start with efforts to
identify these objects on the lattice. I am sure everyone is aware of “cooling" techniques of vacuum
configurations, identifying esemble of instantons in 1990’s. Perhaps first lattice observation of
instanton-dyons was via “constrained minimization" by Langfeld and Ilgenfritz [2], conserving
〈P〉, in which selfdual clusters with non-integer topological charge were seen. Gattringer et al
and Ilgenfritz et al have introduced and refined the “fermionic filter" allowing to identify them via
distinct zero modes and variable periodicity phases.
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FIG. 6: ⇢(x, y) of the zero mode of conf. 2960 at � = ⇡ (left
top), ⇡/3 (right top) and �⇡/3 (bottom). T = 1.08Tc.

All of the ⇢(x, t) plots also look very similar due to all
3 peaks being very close to each other (around 1 lattice
spacing). We therefore just show one of them. See fig. 7.

FIG. 7: ⇢(x, t) of the zero mode of conf. 2960 at � = ⇡ /3.
T = 1.08Tc. y and z at peak location.

If we make a integration around the dominating peak
we find a contribution of the overall normalization of size
0.74. Thus, even though it is dominating, other small
contributions also exist, which end up contributing a sub-
stantial part.

The peak is also not symmetric around the maximum.
This indicates that the other dyons are sitting on one side
of the dyon. How much we can get the two sides to be-
have di↵erently depends on the Polyakov loop, through
the angles µi. This is a good way to exclude a stan-
dard(deconfining) instanton as shown in fig 8.

log(⇢(x))

x

FIG. 8: log(⇢(x)) of the zero mode of conf. 2960 at � = ⇡
(black) and the log of the analytic formula for P = 0.4 and
P = 1 though the maximum. T = 1.08Tc. Red peak only has
been scaled to fit in height, while blue peak uses the found
normalization.

The picture is consistent in all the configurations ex-
plored. Below we show another configuration for the an-
gle � = ⇡/3. This is for a configuration di↵erent from all
the previous ones. This is mostly to show that the picture
is consistent through many di↵erent configurations.

We show the ⇢(x, y) and ⇢(x, t) plot for the lattice re-
sults in fig. 9 and 11 which we compare to the analytic
solution in fig. 10 and 12.

FIG. 9: ⇢(x, y) of the zero mode of conf. 3620 at � = ⇡/3.
T = 1.08Tc.

excellent agreement of the shape
with analytic formulae

extracting the shape of 
the fermonic zero mode

and modyfying the phase
one can find all 3 dyons
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FIG. 3: ⇢(x, t) of the zero mode of conf. 2000 at � = ⇡/3.
T = Tc.

FIG. 4: Analytic zero mode density ⇢(x, t) at � = ⇡/3. Main
dyon centered at the origin. Two other dyons at (0.2, 0.0, 0.0)
and (�0.2, 0.0, 0.0).

Focusing now on another configuration at the same
temperature, we can at the angle � = ⇡ see a strong
indication that the value of the holonomy µi should be
confining (o↵ course the values can fluctuate from con-
figuration to configuration). We see that in fig. 5, where
the fastest fallo↵ can be reproduced by both the confin-
ing and deconfining holonomy, but only for the confining
holonomy is it possible to get a strong enough tilt to one
side.

log(⇢(x))

x

FIG. 5: log(⇢(x)) of the zero mode of conf. 2660 at � = ⇡
(blue) and the log of the peak in fig. 4(green) and the peak
of a fit with µ1 = µ2 = µ3 = 0(red) though the maximum.
T = Tc. Peaks has been scaled to fit in height.

B. T = 1.08Tc

When we use the overlap operator using anti periodic
boundary conditions at T = 1.08Tc, we find a single
strong peak for configurations with Qtop = ±1. This
does not mean that there is only one topological object
in the system. It shows that there is one which is not
strongly a↵ected by opposite type of topological objects,
such that it dominates the contribution to the zero mode.
This is not the case when we start to turn the bound-
ary condition to other values. We look at the angles
� = ⇡,⇡/3,�⇡/3. In the confined phase, these values
correspond to one sector each, and has the largest dis-
tance to the angles of the Polyakov loop µi. We show an
example of ⇢(x, y) at these 3 angles in fig. 6.

We found that their fields 
interfere with each other

 the interaction between them
Is in excellent agreement with 

van Baal analytic formulae ⌧
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FIG. 14: ⇢(x, y) of the zero mode of conf. 2540 at T = 1.08Tc.
� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height
has been normalized to that of � = ⇡.

Other cases overlap much stronger like in fig. 15.
When one do the fits though, this case fits very well with
dyons at a distance around 0.14 (around one lattice spac-
ing), which is close but not overlapping completely. Also
when dyons are close in analytic solutions, the peak of the
density can, dependent on the dyons position, be shifted
slightly to the side.

At T = Tc in fig. 16 and 17 we observe more peaks
which overlap with each other (atleast after summing
over t), and we still observe that the dyons don’t always
sit on top of each other. Also it appears that the typical
distance is larger, though this need more statistics.

FIG. 15: ⇢(x, y) of the zero mode of conf. 2960 at T = 1.08Tc.
� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height
has been normalized to that of � = ⇡.

FIG. 16: ⇢(x, y) of the zero mode of conf. 2000 at T = Tc.
� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height
has been scaled to be similar to that of � = ⇡.

FIG. 17: ⇢(x, y) of the zero mode of conf. 2660 at T = Tc.
� = ⇡(red), � = ⇡/3(blue), � = �⇡/3(green). Peak height
has been scaled to be similar to that of � = ⇡.

VII. STRONG OVERLAP

In some cases we observe several peaks to be overlap-
ping with each other strongly. In these cases one would
most likely need a Qtop = N solution to fit the behavior
completely. Still if we do our 2d slices such that the slice
is dominated by 1 of the several peaks, we can still ob-
tain a behavior similar to that of the Qtop = 1. We show
an example of this where we in fig. 18 show the density
⇢(x, y) and the density ⇢(x, t) in fig. 19 and 20. While we
can see the other peaks in the ⇢(x, t) plots, they are not
too large. We compare the ⇢(x, t) plots to the analytic
formula in fig. 21 and 22, which has been chosen such
that they resemble the lattice results.

• Phys.Lett.B 794 (2019) 14-18 • e-Print: 1811.07914 [hep-lat]
• 		 	 Phys.Rev.D 102 (2020) 3, 034501 • e-Print: 1912.09141

• 		 	 	 	 Rasmus N. Larsen, Sayantan Sharma, Edward Shuryak
*  correlations with local Polyakov loop, in progress

the cleanness case:
domain wall fermions
Q=1 configurations

Nt=8,Nx=32, T/Tc=1,1.08

QCD with near-real  quark masses, 
at T slightly above Tc
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• Phys.Lett.B 794 (2019) 14-18 • e-Print: 1811.07914 [hep-lat]
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the cleanness case:
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Q=1 configurations

Nt=8,Nx=32, T/Tc=1,1.08

QCD with near-real  quark masses, 
at T slightly above Tc

Figure 2: (Left) Space slice of density of an exact zero mode from QCD simulaiton at T = Tc , three colors
show dyons of three different types. (Right) Tau dependence of a dyon, perturbed by an interference with
other dyons.

Let me just comment on recent progress in this direction, in which I was involved [3, 4]. QCD
simulation with realsitic masses were performed at and near Tc using domain wall fermions with
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qood chiral symmetry. Using overlap fermions, in which chiral symmetry is exact, we focused on
exact zero modes (and near-zero ones). The left Fig.2 shows a typical landscape of the zero mode
densities. There are three different dyon types as Nc = 3. One result, which we were able to make
stronger, is that the shape of isolated peaks are well described by analytic formulae from van Baal
and collaborators derived for a single dyon. Apparently, millions of gluons in the ensemble do not
perturbed it.

Previous works however have not analyzed the “topological clusters", the situations in which
two or three dyons overlap strongly. We did so, as Kraan-van Baal solution allows to consider such
cases, and found that agreement is very good in such cases as well. The right figure is an example of
(Euclidean time) τ-dependence of the density. An isolated dyon should show no such dependence
at all, and what is seen is a result of an intereference with overlapping dyons. Locating those and
using analytic expressions for zero mode density, we found agreement in those cases as well. We
thus conclude that semiclassical description of zero and near-zero Dirac modes on the lattice is
quite accurate, at least in terms of the zero mode shapes.

3. Numerical simulation of instanton-dyon ensembles

The simplest limiting case is weak coupling,T → ∞, in which the dyon density is exponentially
small, with their interactions and back reaction being negligible. In QCD with Nf fermionic quarks
all z f = π, and L dyon becomes t’Hooft vertex with 2Nf legs. Either Nf = 1, there is only U (1)a
chiral symmetry explicitly broken at any T , with exponentially small 〈q̄q〉, or Nf > 1 and SU (Nf )a
chiral symmetry is unbroken. So there should be “molecules" L̄L, similar to Ī I molecules originally
discussed in [5–7], also called “bions" by Unsal and collaborators.

The opposite case is dense ensemble at T ∼ Tc, discussed by mean field approximation in a
number of settings [8–10]. Here we will only discuss numerical simulations for the SU (2) [11, 12]
and SU (3) [13, 14] color groups, without (Nf = 0) and with two quark flavors (Nf = 2) .

The first physics issue is decon f inement phase transition. Recall that Gross-Pisarski-Yaffe
(GPY) perturbative potential for Polyakov line favors trivial 〈P〉 = 1 case and disfavors confinement
l 〈P〉 = 0. Therefore, in order to have it the nonperturbative effects – sufficient density of the dyons
in our simulations – should overcome the GPY. In Fig.3 one can see that it happens differently for
SU(2) and SU(3) pure gauge theories. In the former the minimum gradually shifts to the confining
value ν = 1/2, and stay there at high densities. In the latter there is a jump, indicating first order
transition. There is no place here for comparison with lattice data, let me just not that in SU(3) case
〈P〉 jumps to a value 0.4, same as on the lattice. We also discussed de f ormation of SU(3) gauge
theory by an operator ∼ P2, and, in agreement with lattice, observe that deconfinement temperature
can be moved higher, with a jump visibly decreasing.

The second nonperturbative issue is chiral symmetry breaking at low T . Again, it requires
sufficient density of the dyons, so that their zero modes can get collectivized2

2Note that already in 1961 NJL model has shown that one needs large enough 4-fermion coupling to break chiral
symmetry.
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⌫ = 0 is the trivial case

⌫ = 1/2 confining

6

where we have normalized such that Zchanged = 1 for no
interaction. Combining with the unchanged part and the
purturbative potential we get in the limit V ! 1

Z =
X

NM ,NL

exp

✓
� Ṽ3


4⇡2

3
⌫2⌫̄2 � 2nM ln


d⌫e

nM

�

+2nL ln


d⌫̄e

nL

�
+ �f

�◆
(23)

For Ṽ3 ! 1 the partition function is completely domi-
nated by the maximum of the exponent. Finding the free
energy corresponds to finding the minimum of

f =
4⇡2

3
⌫2⌫̄2 � 2nM ln


d⌫e

nM

�

�2nL ln


d⌫̄e

nL

�
+ �f (24)

Note that as the dyon density increases, it changes
its shape, producing a non-trivial minimum at ⌫ 6= 0.
Furthermore, at high density this minimum moves to ⌫ =
1/2, the confining value.

The densities of both kinds of dyons nL, nM are not
in general equal: the model should be able to do this by
adding compensating charge to the whole sphere. In our
model this is done by including the Debye mass.

VI. SELF CONSISTENCY

The partition function we simulate depends on several
parameters, changed from one simulation set to another.
Those include (i) the number of the dyons NM , NL; (ii)
the radius of the S3 sphere r; (iii) the action parameter
S; (iv) the value of the holonomy ⌫, (v) the value of the
Debye mass MD; (vi) the auxiliary factor �, which is then
integrated over as explained in section IV.

In principle, the aim of our study is to obtain the de-
pendence of the free energy on all of those parameters (i-
v). While the practical cost of the simulations restricts
the number of points one can study, we still had gen-
erated more than hundred thousand runs and multiple
plots. However, most of it neither can nor should be
included in the paper. Since our physics goal is to un-
derstand the back reaction of the dyon ensemble on the
holonomy, we study the whole range of holonomies, from
⌫ = 0 to ⌫ = 1/2, and only then locate its minimum. As
for the Debye mass, we will find it from the potential and
then show only the “selfconsistent” input set.

What we actually need to describe at the end is not
the free energy in the whole multi-dimensional space of
all parameters, but the location of the free energy min-
ima. The resulting set should be of co-dimension 1, since
the original physical setting of the problem – the gauge
theory at finite temperature – has only one input param-
eter, T .

Using the definition of the Debye mass g2

2V
@2F
@2v = M2

D
for fixed density we get the configurations response to
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FIG. 5: (Color online). Free Energy density f as a function of
⌫ at S = 6, MD = 2 and NM = NL = 16. The di↵erent curves
corresponds to di↵erent densities. • n = 0.53, ⌅ n = 0.37,
⌥ n = 0.27, N n = 0.20, H n = 0.15, � n = 0.12. Not all
densities are shown.

changing the holonomy which is the Debye mass. We
require that the used value for the Debye mass is the
same as the one found from the derivative of F , or atleast
not more than 0.4 below the used value.

The results shows that as the Debye mass goes to zero
around the phase transition the only configuration that
is consistent with this is that of equal M and L dyons.

VII. THE PHYSICAL RESULTS

We now show only the result which fulfill the self-
consistency requirement. Without fermions the results
are symmetric in ⌫ ! 1� ⌫ and the results are therefore
only for ⌫  1/2. We have included the Diakonov deter-
minant, though its impact is not too great due to the not
so small Debye mass which has been calculated using 3
points. The results here are shown for a wall of 2/(2⇡⌫)
which was chosen in order to have a large enough density
of dyons to overcome the purturbative potential, without
completely making the perturbative potential irrelevant.
We used ⇤ = 1.5 to obtain a phase shift around S = 6.
Action is related to temperature as explained in appendix
A. This should of course be fitted to numerical data, but
the present data on dyons does not have a high enough
e�ciency of detection to do this. The action goes up to
S = 13, beyond this value the number of L dyons become
too close to 1, and we would need a higher total of dyons
to proceed.

The first thing to note about the results is that due
to the repulsive Coulomb term between dyons and an-
tidyons of di↵erent type, the free energy preferred to have
a large Debye mass due to cutting o↵ this repulsion. This
meant that when the free energy spectrum as a function
of holonomy for a fixed density becomes flat, the small
Debye mass created a rise in energy. This resulted in a
small jump in holonomy, since the configurations with a

So, as a function of the dyon density
the potential changes its shape 

and confinement takes place 

3

as e.g. strongly coupled Coulomb plasmas many-body
physics re-summations [23, 24] (and references therein).
As we will show, in this case the free energy has a mini-
mum at the “confining” holonomy value v = ⇡T .

In this paper we will detail the strongly coupled nature
of the dyonic plasma. Our original results consist of (i)
introducing the strong correlations between dyons and
anti-dyons as described by the streamline [22]; (ii) show-
ing that the determinantal interactions induced by the
moduli space for dyons or anti-dyons are mostly repul-
sive causing the moduli volume to vanish for randomly
distributed dyons; (iii) showing that suitably organized
dyons to account for screening correlations yield finite
moduli volumes; (iv) deriving an explicit 3 dimensional
e↵ective action that account exactly for the screening of
dyons and anti-dyons on the moduli space with strong
inter-dyon-anti-dyon streamline interactions; (v) show-
ing explicitly that the strongly coupled dyonic plasma
is center symmetric and thus confining; (vi) deriving the
Debye-Huckel corrections induced by the dyons and anti-
dyons to the leading Pressure for the dyonic plasma and
using it to asses the critical temperature for the SU(2)
plasma; (vi) providing the explicit results for the gluon
topological susceptibility and compressibility near the
critical temperature in the center symmetric phase; (vii)
deriving the scalar and charged structure factors of the
dyonic plasma showing explicit screening of both elec-
tric and magnetic charges at large distances with explicit
predictions for the electric and magnetic masses; (viii)
showing that the strongly coupled dyonic plasma sup-
ports both electric and magnetic confinement.

This paper is organized as follows: In section 2 we re-
view the key elements of the dyon and anti-dyon measure
derived in [4, 5] using the KvBLL instanton. The dyon-
anti-dyon measure is then composed of the product of
two measures with streamline interactions between the
dyons and anti-dyons. We briefly detail the exact re-
writing of the 3-dimensional grand-partition function in
terms of a 3-dimensional e↵ective theory in the SU(2)
case. We also show that the ground state of this ef-
fective theory is center symmetric. In sections 3-6 we
show that in the linearized screening approximation the
dyon-anti-dyon liquid still screens both electric and mag-
netic charges, generates a linearly rising potential be-
tween heavy charges and confines the large spatial Wilson
loops. The t0 Hooft loop in the dyon-anti-dyon ensemble
is shown to be 1 modulo O(↵s) self-energy corrections
which are perimeter-like in section 7. Our conclusions
are in section 8.

II. INTERACTING DYON-ANTI-DYON
ENSEMBLE

A. The setting

The first step is the introduction of the nonzero ex-
pectation value of the 4-th component of the gauge field,

which is gauge invariant since at finite temperature it en-
ters the holonomy integral over the time period, known
also as the Polyakov line. Working in a gauge in which
hA4i belongs to the diagonal and traceless sub-algebra
of Nc � 1 elements, one observes the standard Higgsing
via the adjoint field. All gluons except the diagonal ones
become massive. We will work with the simplest case of
two color gauge theory Nc = 2, in which there is only one
diagonal matrix and the VEV of the gauge field (holon-
omy) is normalized as follows

⌦
A3

4

↵
= v

⌧3

2
= 2⇡T⌫

⌧3

2
(1)

where ⌧3/2 is the only diagonal color generator of SU(2).
At high T it is trivial with ⌫ ! 0, and at low T < Tc it
takes the confining value ⌫ = 1/2. With this definition,
the only dimensional quantity in the classical approxima-
tion is the temperature T , while the quantum e↵ects add
to the running coupling and its ⇤ parameter. Since we
are working near and below Tc, we will follow the lattice
practice and we use the latter as our main unit.

In the semi-classical approximation, the Yang-Mills
partition function is assumed to be dominated by an in-
teracting ensemble of dyons (anti-dyons) [4, 5]. For large
separations or a very dilute ensemble, the semi-classical
interactions are mostly Coulombic, and are encoded in
the collective or moduli space of the ensemble. For multi-
dyons a plausible moduli space was argued starting from
the KvBLL caloron [3] that has a number of pertinent
symmetries, among which permutation symmetry, over-
all charge neutrality, and clustering to KvBLL at high
temperature. Since the underlying calorons are self-dual,
the induced metric on the moduli space was shown to be
hyper-Kahler.

The SU(2) KvBLL instanton (anti-instanton) is com-
posed of a pair of dyons labeled by L, M (anti-dyons
by L, M) in the notations of [4]. Specifically M car-
ries (+, +) and L carries (�,�) for (electric-magnetic)
charges, with fractional topological charges vm = ⌫ and
vl = 1 � ⌫ respectively. Their corresponding actions are
SL = 2⇡vm/↵s and SM = 2⇡vl/↵s.

The statistical measure for a correlated ensemble of
dyons and anti-dyons is

dµDD[K] ⌘ e�VDD(x�y) (2)

⇥
NY

m=1

KmY

i=1

f d3xmi

Km!
det(Gmi[x])

⇥
NY

n=1

KnY

j=1

f d3ynj

Kn!
det(Gnj [y])

The streamline interactions induced by the potential
VDD̄ correlate the two otherwise statistically independent
dyon and anti-dyon sectors. (Note that by the potential
we mean the extra action and not the energy, thus no
extra 1/T ). Asymptotically,

holonomy

< P >= cos(⇡⌫) ! 0

if ⌫ = 1/2
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Confinement remains one the most interesting and challenging nonperturbative phenomenon in
non-Abelian gauge theories. Recent semiclassical (for SU(2)) and lattice (for QCD) studies have
suggested that confinement arises from interactions of statistical ensembles of instanton-dyons with
the Polyakov loop. In this work, we extend studies of semiclassical ensemble of dyons to the SU(3)
Yang-Mills theory. We find that such interactions do generate the expected first-order deconfinement
phase transition. The properties of the ensemble, including correlations and topological susceptibil-
ity, are studied over a range of temperatures above and below Tc. Additionally, the dyon ensemble is
studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such
a term can cause the theory to remain confined and even retain the same topological observables at
high temperatures.

I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum
field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
phenomena remain beyond the scope of what can be stud-
ied analytically. Notably, nonperturbative phenomena
such as confinement – the disappearance of quarks and
gluons from the physical spectrum – is not completely un-
derstood. Confinement occurs not just in QCD, but in
various Yang-Mills theories with or without quarks, mak-
ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.

Euclidean formulation of finite temperature QCD nat-
urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.

It was then realized that instanton-dyons provide a
very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].

Semiclassical approaches to finite-T gauge theories,
with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
ature. Therefore their densities are suppressed at high T
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum
field theory describing the fundamental particles and
forces that make up nuclear physics. While QCD is re-
markably successful in describing nuclear physics, many
phenomena remain beyond the scope of what can be stud-
ied analytically. Notably, nonperturbative phenomena
such as confinement – the disappearance of quarks and
gluons from the physical spectrum – is not completely un-
derstood. Confinement occurs not just in QCD, but in
various Yang-Mills theories with or without quarks, mak-
ing it clear that it emerges from the non-perturbative be-
havior of the gluons, rather than the quarks. Above cer-
tain critical temperature Tc deconfinement takes place,
and the QCD-like theories turn into a new form of mat-
ter, the Quark-Gluon Plasma (QGP).

Historically the first mechanism of the deconfinement
transition was a ’dual superconductor’ model [1–3]. At
T < Tc the chromoelectrically-charged quarks and glu-
ons are connected by QCD flux tubes, dual to magnetic
flux tubes in superconductor. With the advent of lat-
tice gauge theories many aspects of this scenario were
put to the test. In particular, the profile of the QCD
flux tubes [4] was found to agree well with dual super-
conductor model. Monopoles were observed and found
to rotate around these flux tubes, as expected. Bose-
Einstein condensation of monopoles was detected and its
critical temperature was shown to coincide with Tc [5].
A high density of monopoles was found to be responsible
for unusual kinetic properties of QGP [6].

Euclidean formulation of the gauge theory lead to dis-
covery of 4D topological solitons known as BPST instan-
tons [7]. A model of their ensemble, the Instanton Liquid
Model (ILM) [8], has explained how instantons generate
chiral symmetry breaking. As certain extrema of the
path integral over gauge configurations, they form a ba-
sis for semiclassical theory, consistently including fluctua-
tions around classical fields. Furthermore, one can study
the interaction between instantons in their statistical en-
semble: those studies explained behavior of correlation

functions of various mesonic and baryonic currents, for
review see e.g. Ref. [9]. Yet the instanton theory has not
reproduced confinement.

Euclidean formulation of finite temperature QCD nat-
urally led to a nonzero value of the Polyakov loop hP i 6= 0
as a signature of deconfinement. Note that through-
out this paper we use hP i as shorthand for 1

3 hTr[P (~x)]i.
It can be interpreted as the nonzero vacuum expecta-
tion value (VEV) of the time component of the gauge
field A0, also known as nonzero holonomy. The natu-
ral question was then how to deform the instanton con-
figurations in a way consistent with nonzero holonomy
in the bulk. It was answered in Refs. [10, 11], who
discovered that instantons dissolve into Nc (number of
colors) constituent solitons, called instanton-dyons (or
instanton-monopoles). Like original instantons, they are
(anti)selfdual, so their actions and topological charges are
equal. But, unlike instantons, their actions and topologi-
cal charges are not quantized to integers; standard index
theorems are avoided because instanton-dyons have mag-
netic charges and therefore are still connected by Dirac
strings.

It was then realized that instanton-dyons provide a
very valuable bridge between the theory of monopoles
and instantons, providing a way to explain both confine-
ment and chiral symmetry breaking in a single setting.
Unlike monopoles, the instanton-dyons are semiclassical
objects, allowing for the construction of a consistent the-
ory of an interacting ensemble. Last but not least, the
statistical sum in terms of instanton-dyons is ”Poisson
dual” to that based on monopoles, see Refs. [12, 13].

Semiclassical approaches to finite-T gauge theories,
with and without quarks, have lately been subject of
multiple studies. Confinement in this theory is due to
the back reaction of the dyon ensemble on the Polyakov
loop, forcing it to take zero value at T < Tc, see e.g. Ref.
[14] for a simple model, Ref. [15] for mean-field analysis,
and Refs. [16, 17] for numerical simulations of the SU(2)
gauge theory. It is important that they are semiclas-
sical objects, unlike the QCD monopoles [13], with the
actions Sdyons ⇠ 1/g2 ⇠ log(T/⇤) growing with temper-
ature. Therefore their densities are suppressed at high T
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FIG. 1. (Color online) Structure of the holonomies and dyon types in SU(3). Circle has circumference of 1.

there is a perturbative interaction between thermal gluons and the holonomy. This generates the Gross-Pisarski-Ya↵e
potential VGPY [22], which appears in the an exponent in the partition function. For SU(3), this is given by

VGPY

T Ṽ3

=
4⇡2

3
(2(⌫(1 � ⌫))2 + (2⌫(1 � 2⌫))2). (5)

Here the potential is shown with factors divided out so that it has units of free energy density. This potential disfavors
confinement, having minimum at trivial holonomy ⌫ = 0, and a maximum at the confining holonomy ⌫ = 1

3 .
The dyon contribution to the partition function consists of two parts, the contributions of the dyons in the absence

of interactions Z0, which can be expressed analytically directly from the input parameters, and Znp the contributions
of the dyon interaction, whose calculation is the subject of the simulation of the partition function, performed by
Monte-Carlo algorithms in this work. The total partition function is their product Z = ZGPY Z0Znp.

The statistical weight for a single instanton was explicitly calculated in Ref. [23] for SU(2). Taking the dilute limit,
which removes interaction between the dyons, this gives

Z
SU(2)
0 =

⇤

(4⇡)2
S4

0e�S2
0⌫

8⌫
3 �1(1 � ⌫)

8(1�⌫)
3 �1 (6)

It is easy to see how this factors into the weight for each individual dyon: Each dyon species contributes a factor ofp
⇤S0e

�p
So⌫ and the two holonomy terms stem from the holonomies of the individual M- and L-type dyons. A factor

of 4⇡⌫i is divided out for each dyon type. This is to remove a constant term that appears remains when taking the
dilute limit in Znp. Knowing this, it is easy to construct the instanton weight in SU(3) and extend it to an arbitrary
number of dyons by summation. The partition function, assuming an equal number of dyons and antidyons, is

Z0 =
X

NM1,NL,NM2

✓
1

NM1!
(Ṽ3d⌫)

NM1

◆2

⇥
✓

1

NL!
(Ṽ3d1�2⌫)

NL

◆2

⇥
✓

1

NM2!
(Ṽ3d⌫)

NM2

◆2

,

(7)

where d⌫ is the weight of an individual dyon with holonomy ⌫,

d⌫ =
⇤

4⇡
S2

0e�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal densities of M1- and M2-type dyons. The free energy

FIG. 1. (Color online) Structure of the holonomies and dyon
types in SU(3). Circle has circumference of 1.

B. The partition function and dyon interactions

A complete calculation of the dyons’ free energy re-
quires the construction of the dyonic partition function.
We start first with e↵ects that are not induced by the
dyons’ non-perturbative interactions. In the absence of
all dyonic e↵ects, there is a perturbative interaction be-
tween thermal gluons and the holonomy. This generates
the Gross-Pisarski-Ya↵e potential VGPY [22], which ap-
pears in the an exponent in the partition function. For
SU(3), this is given by

VGPY

T Ṽ3

=
4⇡2

3
(2(⌫(1 � ⌫))2 + (2⌫(1 � 2⌫))2). (5)

Here the potential is shown with factors divided out so
that it has units of free energy density. This potential
disfavors confinement, having a minimum at the trivial
holonomy ⌫ = 0, and a maximum at the confining holon-
omy ⌫ = 1

3 .
The dyon contribution to the partition function con-

sists of two parts, the contributions of the dyons in the
absence of interactions Z0, which can be expressed ana-
lytically directly from the input parameters, and Znp the
contributions of the dyon interaction, whose calculation
is the subject of the simulation of the partition function,
performed by Monte-Carlo algorithms in this work. The
total partition function is their product Z = Z0Znp.

The statistical weight for a single instanton was explic-
itly calculated in Ref. [23] for SU(2). Taking the dilute
limit, which removes interaction between the dyons, this
gives

Z
SU(2)
0 =

⇤

(4⇡)2
S4

0e�S2
0⌫

8⌫
3 �1(1 � ⌫)

8(1�⌫)
3 �1 (6)

It is easy to see how this factors into the weight for each
individual dyon: Each dyon species contributes a factor

of
p
⇤S0e

�p
So⌫ and the two holonomy terms stem from

the holonomies of the individual M- and L-type dyons.
A factor of 4⇡⌫i is divided out for each dyon type. This
is to remove a constant term that appears remains when
taking the dilute limit in Znp. Knowing this, it is easy
to construct the instanton weight in SU(3) and extend
it to an arbitrary number of dyons by summation. The
partition function, assuming an equal number of dyons
and antidyons, is

Z0 =
X

NM1,NL,NM2

✓
1

NM1!
(Ṽ3d⌫)

NM1

◆2
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✓

1

NL!
(Ṽ3d1�2⌫)

NL

◆2
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✓

1

NM2!
(Ṽ3d⌫)

NM2

◆2

,

(7)

where d⌫ is the weight of an individual dyon with holon-
omy ⌫,

d⌫ =
⇤

4⇡
S2

0e�S0⌫⌫
8⌫
3 �1. (8)

Now we may take the limit V ! 1 and assume equal
densities of M1- and M2-type dyons. Additionally we
resolve the factorial terms with Stirling’s approxima-
tion carried out to three terms ln N ! ⇡ N ln N � N +
ln(

p
2⇡N). The free energy F = � ln(Z) is given by the

following expression

f =
4⇡2

3
(2(⌫(1 � ⌫))2 + (2⌫(1 � 2⌫))2)

� 4nM ln


d⌫e

nM

�
� 2nL ln


d1�2⌫e

nL

�

+
ln(8⇡3N2

MNL)

Ṽ3

+ �f

(9)

where �f is the free energy density stemming from the
interactions of the dyons. If the dyons have classical bi-
nary interactions �Sclass and a volume metric G, their
contributions to the partition function and the free en-
ergy density are

Znp =
1

Ṽ
(4NM1+2NL)
3

Z
Dx det (G)e��Sclass (10)

�f = � ln(Znp) (11)

The set of parameters that minimizes the free energy
density corresponds to the physical dyon ensemble in the
infinite volume limit. This elucidates the main procedure
of this work: to first compute the free energy density of
the ensemble for a wide range of parameters, and then
locate their values which minimize it.

The classical interactions between dyons and antidyons
are, at distances exceeding the dyon cores, asymptot-
ically Coulomb-like. For generic SU(Nc) theories, the

7

TABLE II. Values of the parameters of the ensemble above
and below the critical temperature Tc from linear fits to the
nearest data points on either side of the phase transition at
S0 = 13.18.

T ! T�
c T ! T+

c

⌫ 1/3 0.236

hP i 0 0.392

nM 0.550 0.529

nL 0.550 0.068

At temperatures below Tc the ensemble is in the con-
fined phase with ⌫ = 1/3 and nM = nL, as can be seen
in Fig. 3 (left). At densities below the physical one,
the minimum shifts to the left as the nonperturbative
interactions become weak compared to the perturbative
contribution to the free energy. At higher densities the
ensemble prefers to remain in the confined phase, but
with a larger free energy minimum and curvature of the
potential.

The deconfined phase has a similar structure, but with
the global minimum occurring at ⌫ < 1/3 and nM > nL.
However at densities above that of the global minimum,
the minima continue to move towards larger ⌫. At these
densities, the repulsive core dominates and it becomes en-
ergetically favorable to make the many Mi dyons smaller
at the cost of making the few L dyons larger. It is possi-
ble that at densities higher than what were studied here,
the ensemble may have a minimum at ⌫ > 1/3.

These plots only show a slice of the full space of pa-
rameters explored for each value of S0 for specific values
of nM/nL. The structure of the first-order phase transi-
tion can be seen more clearly in Fig. 4. By considering
the minimum free energy density selected from all com-
binations of nM and nL as a function of the holonomy,
the two local minima – one in the confined phase and
the other in the deconfined – are clearly visible. At the
value of S0 nearest to the critical value, the free energy
at the two minima are nearly degenerate and the global
minimum switches between the two as the temperature
changes.

This structure is di↵erent from the that of SU(2). In
SU(2), where the phase transition is second order, rather
than having two degenerate minima, the holonomy po-
tential flattens near Tc (see e.g. Fig. 5 of Ref. [16]). This
allows the minimum to quickly, but smoothly, shift from
the confining holonomy to smaller values. Additionally,
there is a ⌫ $ 1 � ⌫ symmetry not present in SU(3).

B. Temperature dependence of the parameters

The free energy density f , unlike other physical quan-
tities, remains continuous across even a first-order phase
transition, as we see in Fig. 5. Its derivative, however,
may not. The free energy varies with temperature much
more rapidly in the confined phase than the deconfined.

FIG. 4. (Color online) Holonomy dependence of the minimum
free energy density near the phase transition. Error bars not
shown for readability.

FIG. 5. Temperature dependence of the free energy density
of the dyon ensemble.

The most important feature of the dyon ensemble
for describing the deconfinement transition is the av-
erage Polyakov loop as a function of the temperature
hP (T )i. Below Tc, the holonomy takes the confining
value ⌫ = 1/3, hP i = 0. At Tc the value jumps to ⇠ 0.4
and then continues to increase as T increases. The value
of the average Polyakov loop above the phase transition
shows qualitative agreement with the lattice data [21],
but does not increase with temperature as quickly. A

critical: 
jump in  

holonomy

red dots move to the right at higher T

Figure 3: Free energy f versus the holonomy parameter ν, for SU(2) (left) and SU(3) (right) pure gauge
theories. Different curves are for different instanton densities (or temperatures).

symmetric phase u=>M
d=>L

< ūu > 6=< d̄d >

Second deformation: QCD2 and Z2QCD are dramatically different!
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FIG. 4: Debye Mass Md as a function of action parameter
S, for the Z2-symmetric model (red squares) and the usual
QCD-like model with Nc = Nf = 2 (blue circles).

FIG. 5: The Dirac eigenvalue distribution ⇢(�) for ensemble
of 64 (Blue triangle) and 128 (Red square) dyons, for Z2-
symmetric model at S = 6. The upper plot shows the region
of smaller eigenvalues, in which one can see the finite volume
“dip”, of a width which scales approximately as 1/V4 as ex-
pected. The lower plot shows the same data sets, but in wider
range of eigenvalues: it displays the “inverse cusp” shape of
the distribution discussed in the text.

⇢(�) to �! 0 and to extract the value of the quark con-
densate.) In the other model, the Nc = Nf = 2 QCD,
such “inverse cusp” is absent, see II.

So far our discussion assumed an infinite volume limit,
in which case the Dirac eigenvalue spectrum extends till
� = 0. However, it is well known that any finite-size sys-
tems, with 4-volume V4, have the smallest eigenvalues of
the order O(1/V4). This creates the so called “finite size
dip”, in the eigenvalue distribution, also clearly visible in
Fig. 5(upper). One can see that doubling of the volume,
from 64 to 128 dyons at the same density, reduces the
width of this dip roughly by factor two, as expected.

As the holonomy jumps away from its confining value
0.5, the dyon densities become di↵erent. Unlike the fun-
damental quarks, where the holonomy goes down, the
densities of L dyons become larger than that of M dyons.
The total density goes down, but the reduction in M
dyons, leaves space for a few more L dyons. This means
that on one hand the density is larger for L dyons, and
the zero-mode density is therefore higher. On the other
hand, the factor in the exponential in Tij (Eq. 4) is ⌫̄
for L dyons, and ⌫ for M dyons. This means that as ⌫
becomes smaller, the e↵ective density of the zero-modes
associated with L dyons become smaller, while the zero-
modes associated with M dyons gets an increased e↵ec-
tive density. It is therefore the interplay between these
two e↵ects, that control which of the condensates are
largest. This results in what we show in Fig. 6, where
the M dyon condensate appears to be slightly larger than
the L dyon condensate, and both condensates decreases
slightly in accordance with the total density of dyons. It
is also observed that since each gas of zero-modes e↵ec-
tively works as a Nf = 1 ensemble, with non-vanishing
condensates even at the lowest densities we studied[30]
(the r.h.s. of the plot). The other model – Nc = Nf = 2
QCD –has condensate shown by black triangles: it clearly
has chiral symmetry restoration,at S > 8 we detected no
presence of a condensate.
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FIG. 6: Chiral condensate generated by u quarks and L dyons
(red squares) and d quarks interacting with M dyons (blue
circles) as a function of action S, for the Z2-symmetric model.
For comparison we also show the results from II for the usual
QCD-like model with Nc = Nf = 2 by black triangles.

the usual QCD 
has chiral  
restoration

Z2 QCD

no chiral symmetry
restoration at any T

note the condensate
is much larger for Z2?

5

■ ■

■ ■

■

■

■■

■ ■ ■
5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

S

P

FIG. 2: The mean Polyakov loop P as a function of action pa-
rameter S, for Z2-symmetric model (red squares), compared
to that for the Nc = Nf = 2 QCD with the usual anti-periodic
quarks (blue circles).

V. CHIRAL SYMMETRY BREAKING

As we already explained above, the main feature of the
ZNc

-symmetric model with Nf = Nc distribute all types
of quarks evenly, so that each type of dyons would have
one quark flavor possessing zero modes with it. This is
in contrast to the usual QCD, in which all quarks are an-
tiperiodic and thus all have zero modes only with twisted
L-type dyons.

The simplest examples considered in this work are two
Nc = Nf = 2 theories, the Z2-symmetric model and the
two color QCD. In the former case the partition function
includes two independent fermionic determinants, one for
M and one for L dyons, with a single quark species each.
In the latter, one has a square (two-species) of the deter-
minant of hopping matrix over the L-dyons only.

Here we remind well known facts about chiral sym-
metry breaking in such cases, and the consequences for
such determinants. Theories with a single quark flavor
have only a single Ua(1) symmetry, broken explicitly by
the fermionic e↵ective action. Indeed, it includes terms
 ̄L R or  ̄R L directly coupling components with op-
posite chiralities. So, there are no chiral symmetries to
break, and condensates are always nonzero, proportional
to density of the topological objects.

The case with two or more flavors is di↵erent: there is
the SU(Nf ) flavor symmetry, which can be either bro-
ken or not, depending on the strength of the 2Nf -quark
e↵ective interaction.

A. Dirac eigenvalue distribution

Di↵erences in chiral breaking mechanisms in these two
models indicated above also manifest themselves in the
Dirac eigenvalue distribution.

For a proper persepctive, let us remind that for the

SU(Nf ) flavors with Nf > 2 a general Stern-Smilga the-
orem [29] states that the eigenvalue distribution at small
� has the so called “cusp” singularity

⇢(�) ⇠ |�|(N2
f � 4) (7)

For Nf > 2 the coe�cient is positive – this is known
as “direct cusp”, and was also observed, both on the
lattice and in the instanton models. In the particular case
Nf = 2 this cusp is absent: this fact can be traced to the
absence of symmetric dabc structure constant in the case
of SU(2) group. Indeed, both the calculations done in the
instanton liquid framework (for examples and references
see [8]) and our previous studies II of the Nf = 2 theory
had produced “flat” eigenvalue distribution

⇢Nf =2(�) ⇠ const (8)

In the Nf = 1 case the Smilga-Stern derivation does
not apply, but empirically it has been observed that the
distribution does have a singularity at � = 0 of the
form of the “inverse cusp”, ⇠ �|�|, with negative co-
e�cient. Our results for the Z(Nc)-QCD under consid-
eration shown in Fig. 5 also show the “inverse cusp” with
linear behavior of ⇢(�). (We use this fact to extrapolate

FIG. 3: (upper) Densities of L dyons (red squares) and
M dyons (blue circles), as a function of action parameter S,
for the Z2-symmetric model. (lower) the same for the usual
QCD-like model with Nc = Nf = 2 and anti-periodic quarks.

confining phase
 gets much more

robust: strong first order
mixed phase (flat F)

is observed at medium densities

<P>

QCD

Figure 4: Quark condensates (left) and Polyakov line (right) versus the action parameter S(T ), higher
temperatures are at the right side. Blue circles in the right plot are for QCD, Nc = Nf = 2, and red squares
are for Z2QC2D: one finds crossover in the former changes to first order transition in the latter theory. Black
triangles on the left are for QCD Nc = Nf = 2, possessing restoration of chiral SU (2)a symmetry above
S > 8. The blue discs and red squares show two chiral condensates for Z2QC2D: one can see a transition
from symmetric to asymmetric phase, but no chiral symmetry restoration.

4. QCD deformation by modified quark periodicity phases

This deformation came first under the name of "imaginary chemical potentials". in [15]. Its
usage is different for small and large deformations. In the former case the motivation was due
to the fact that imaginary chemical potentials can be simulated by usual Monte Carlo algorithms,
while those with real µ one cannot. Plotting lattice results for negative µ2 < 0 one can extrapolate
to positive ones, e.g. by Taylor series: this strategy has been used in many lattice studies.

For large phase Roberge and Weiss predicted first order transitions at near z = (2k + 1)π/Nc,
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due to different Nc branches of the gluonic GPY potential. Of course, it is a perturbative argument
expected to be true at large T only. And indeed, when dyons are numerous this transition ends,
according to [16] it happens at TRW = 1.34(7)Tc = 208(5) MeV .

Another form of deformed QCD is to select chemical potentials imaginary and proportional to
T , so that fugacities of quarks become exp(iz f ), f = 1..Nf with certain T-independent periodicity
phases. Moving from conventional z f = π (quarks are fermions) to other values one should see
multiple phase transitions, each time when one of z f crosses Polyakov phases µi (T ), as the fermion
zero modes jump from one instanton-dyon to another. The ‘ultimate" selection for Nc = Nf theories
was proposed in [19], with z f suggested to be located “homogeneously", one inside each holonomy
sector [µi+1, µi]T<Tdecon f inement

. In Fig.4 we show our simulations for Nc = Nf = 2 QCD and
Z2QC2D with one quark being fermion and one being boson. Indeed, the plots show drastic changes
of both phase transitions. The deconfinement changes from crossover to strong first order, and chiral
restoration is not seen at all 3. Let us stress that multiple deformed worlds (such as ZNcQCD) are
unphysical, qualitatively different from ours, thus separated by singularities. E.g. ZNcQCD has
flavor and chiral symmetries completely different (except at high T when all µi are near zero). Its
chiral symmetry is split diagonally for all flavors (U (1)a)N f −1, each broken explicitly by diquark
t’Hooft operators for each dyon type. Obviously, this chiral symmetry breaking has no relation to
spontaneously broken SU (Nf ) chiral symmetry occuring in our world due to multi-quark operators
and only at finite dyon density.

Another take on unusual quark periodicity phases historically came from supersymmetry.
Davis, Hollowood and Khose [18] considered N=1 SYM theory on R3S1 with small circle and
bosonic gluinos, calculating the quark condensate using instanton-dyons. In this case the gluino
term in GPY potential changes sign, canceling the gluon term.

Unsal [20] went further, considering theories with more than one flavor of gluinos (adjoint
fermions), Na > 1. If so, the GPY potential is multiplied by (1 − Na) and for Na > 1 get
inverted, now favoring confinement at weak coupling (small circle or high T). It was suggested
that with confinement present both at small and large L = 1/T , there would be continuity (no phase
transitions) at any L. Yet lattice studies [17] have found two deconfined phases in between those
two limits, preventing such continuity. Once again, one finds that considerations based on GPY
potentials get invalid outside the weak coupling (high T) limit, where they belong.

Unsal et al wrote several more papers, studying phases with inverted GPY at weak coupling in
similar settings. In [21] the ZNcQCD is appended by heavy adjoint quarks with bosonic periodicity
phase. The motivation is explained as follows: "The idea of adiabatic continuity is to find a way to
put an asymptotically-free gauge theory on R1,2S1 in such a way that its dependence on the spatial
circle size L is smooth. If this condition is met, then one can get insight about the behavior of
the theory for large L, where it is strongly coupled, by studying it for small L, where it is weakly
coupled."

Well, “adiabatic continuity" is just an unproven assumption, as no calculations at finite L (finite
dyon density) were done or even attempted. Furthermore, one may doubt that, by adding to the

3Note that it is a somewhat special case. If the group be e.g. SU(3), and two sectors of M1, M2 dyons would have
z1, z2 located in them, ultimately at high T these sectors shrink as µi (T ) move toward zero. When they cross phases
z1, z2 , the zero modes would return to L dyon and thus at infinite T limit would become similar to undeformed QCD, in
which chiral symmetry is restored.
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ZNcQCD (rather unphysical by itself at any T!) even more unphysical construction inverting the
GPY at high T � Madj will take it any closer to the real world. In general, there is no easy way
around: only studies of QCD phases at finite T and density of topological objects, overcoming the
GPY potential, can do it (as they being done on the lattice or in our simulations).

Summary: Semiclassical theory based on ensembles of instanton-dyons reproduces semi-
quantitatively the main lattice finding about deconfinement and chiral phase transitions, in pure
gauge theories, in QCDwith light quarks. Deforming QCD by extra action with powers of Polyakov
loop shift/modify the deconfinement transition. Deforming it via quark periodicity phases lead
to phases with drastically different deconfinement and chiral transitions. While all these phases
have multiple unphyisical properties, the existence elucidate the mechanisms driving QCD phase
transitions. The key to them are “jumps" of the fermion zero modes, from one dyon type to another.

The dyon zero modes from lattice real-life QCD simulations preserve remarkably well their
shapes on the lattice, even in the case of their strong overlaps. Millions of thermal gluons does not
seem to affect them.

Comparing our results with lattice ones, one should note that reported dyon simulations are
simple multiple integrals over dyon collective variables. So it is relatively easy to get to say
Nd ∼ 300 of dyons. Note that while lattice is of course based on first principles, its practical
cost is such that one typically have Nd ∼ O(10), as e.g.seen from our Fig.2. If instanton-dyon
ensembles are important for QCD phase transitions, as we suggest, such Nd are perhaps too small
to get accurate description of their phases.
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