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1. Introduction

Grand-unified theories (GUTs) [1] are an attractive explanation for the, in the Standard Model
unrelated, electric charges of the fermions. Furthermore, they appear to elegantly continue the
unification of forces, which started with electromagnetism. However, the usual approach to them
relies, as in the StandardModel, on a spontaneous breaking of the gauge symmetry. Such a breaking
is forbidden by Elitzur’s theorem [2]. In the Standard Model, the Fröhlich-Morchio-Strocchi (FMS)
mechanism [3] alleviates this discrepancy, and explains why, even when ignoring Elitzur’s theorem,
quantitatively little changes.

Unfortunately, it turns out that for generic GUTs this does not happen [4, 5]: general aspects
like the spectrum differ qualitatively from the one expected from a literal breaking of the gauge
symmetry. This has been supported by exploratory lattice simulations [6, 7]; for a review see [8].
This does not imply that the idea of GUTs does not work in principle. But it substantially alters the
class of theories suitable to serve as GUTs, and especially excludes most popular candidates [4, 5].
To be able to build more suitable candidates requires thus a firm understanding of suitable analytic
tools. In fact, the FMS mechanism has again proven so far to be capable of such a description [8],
and it essentially takes the form of an augmentation of perturbation theory, thus applicable with
comparable ease [9].

Still, there remain a couple of issues for which the FMS mechanism needs to be better un-
derstood, which have no analogue in the Standard Model. These relate to states, which have
global quantum numbers under weakly-coupled interactions, which do not appear in the elementary
spectrum [4, 6], or in cases with multiple conventional breaking patterns [4].

To ensure a reliable understanding requires a confirmationwith first-principle, non-perturbative
methods, such as lattice simulations. After all, the FMS mechanism is perturbative in nature [8],
even if it transcends ordinary perturbation theory.

We present here preliminary results for this endeavour. To this end, we study the simplest
theories which exhibit the features in questions, both to avoid interference of more complex structure
and to keep the necessary amount of computing manageable. These are SU(3) Yang-Mills theories
coupled to a single scalar field in either the fundamental or the adjoint representation. Our results
corroborate previous exploratory findings, and determine the next steps.

2. Gauge-scalar theories

2.1 Continuum formulation

A general SU(#) gauge-scalar theory can be described by the Lagrangian

L = −1
4
,`a,

`a +
(
�`q

'
)† (

�`q'
)
−+

(
q'
†
q'

)
, with , `a = m`,a−ma, ` + 86[, `,,a] ,

(1)
where, `a is the gauge-field strength tensor and +

(
q†q

)
is a gauge invariant potential that allows

for a Brout–Englert–Higgs (BEH) effect. The label ' here refers to the representation of the scalar
field – i.e., fundamental or adjoint with respect to SU(#) – and �` is a covariant derivative which
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acts on the scalar field as

�`q
' =

(
m` − 86,0

`)
'
0

)
q' with generators ()0)'8 9 =

{
(C0)8 9 ' = ‘fundamental’
−8 5 08 9 ' = ‘adjoint’

(2)

In the fundamental case, we use a vector representation of the scalar with qFun. ≡ i and denote its
(complex) components as i0. Under a gauge transformation,

with � (G) ∈ SU(#) , i(G) → i′(G) = � (G)i(G) (3)(
�`i

)
(G) =

(
m`i

)
(G) − 86,` (G)i(G) →

(
�`i

) ′(G) = � (G) (�`i) (G) . (4)

In the adjoint case we use a matrix representation of the algebra-valued scalar field instead, Σ(G) =
Σ0 (G))0 to make the difference clear. Under a change of gauge, the field transforms as

Σ(G) → Σ′(G) = � (G)Σ(G)�†(G) (5)(
�`Σ

)
(G) =

(
m`Σ

)
(G) + 86

[
,` (G),Σ(G)

]
→

(
�`Σ

) ′(G) = � (G) (�`Σ) (G)�†(G) . (6)

We note that in the fundamental case there is an additional global U(1) symmetry acting only on
the scalar field, while in the adjoint case this is merely a Z2 symmetry. We will assume that the
potential leaves these symmetries intact, and that it allows for a BEH effect at tree-level.1 In the
following we will concentrate on SU(3) as the gauge group. Note that the global symmetry is the
same for all SU(#) gauge groups with # ≥ 3.

2.2 Gauge symmetry and physics

The usual approach to such theories [4, 10] is to implement the BEH-effect after gauge-fixing
and split the Higgs field as q(G) = Eq0 + [(G), where E is the vacuum expectation value, q0 is a unit
vector fixed by the gauge choice, and [ is the fluctuation field. In the present case this corresponds
in the fundamental case to a breaking of SU(3) → SU(2) while in the adjoint case two patterns,
SU(2) ×U(1) and U(1) ×U(1), are possible. Depending on the realised breaking pattern this gives
mass to 5/4/6 of the gauge bosons respectively, and leaves one massive and 0/3/1 massless scalar
fields. The fields are multiplets or singlets with respect to the corresponding unbroken groups.
Note that in the usual gauge choices an unbroken diagonal subgroup of the gauge symmetry and
the global symmetry remains, under which some of the states are charged.

As noted, Elitzur’s theorem forbids this, so the gauge symmetry needs to stay intact. Thus, only
gauge-invariant states can be physical, which are necessarily composite. Such states can only be
classified according to (unbroken) global groups. Since these are abelian (i.e. U(1) and Z2), their
representations are one-dimensional, and thus no degeneracy patterns appear, except accidental
ones.

As the same reasoning also applies to the Standard Model, this appears to be in contradiction
with the wealth of experimental data. It is here, where the FMS mechanism comes into play.
This approach takes the stance of Elitzur’s theorem as a starting point, then uses only explicitly
gauge-invariant quantities.

1Note that in the adjoint case the most general potential would contain also a tr
[
Σ3] term which we explicitly exclude

by this requirement.
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Consider, e. g., the uncharged scalar channel. A suitable gauge-invariant operator is necessarily
a composite operator, e. g., i†i or tr

[
Σ3] . Since the BEH effect can be considered to be due to

gauge-fixing alone, it is viable to work in a Landau–’t Hooft gauge. The operators can then be
written as, e. g.,

q†q = E2 + E
(
q
†
0[ + [

†q0

)
+ [†[ ≡ E2 + Eℎ + [†[ , (7)

where ℎ = 2 Re
(
q
†
0[

)
is the ‘elementary Higgs’ field. Ignoring the constant term, this implies

that to leading order in [/E the composite operator behaves like the single-particle operator. When
constructing gauge-invariant matrix elements, the combination of this additional expansion with the
usual perturbative one constitutes the FMS mechanism. It is therefore an analytic and systematic
approach within the validity of the expansions.

In particular it follows for the propagator that〈(
q†q

)†
(G)

(
q†q

)
(H)

〉
2

≈ E2 〈
ℎ(G)†ℎ(H)

〉
2

(8)

to leading order, and thus the poles coincide. In the Standard Model, there is a one-to-one mapping
between the poles of the composite particles and an elementary one in every channel, and the same
is true for all matrix elements to leading order in [/E. This explains why, in the Standard Model, the
usual picture of the BEH effect coincides with the formally correct approach of the FMS expansion.
This is also confirmed in lattice simulations: see [7, 8] for an overview.

The reason for this is that the remaining global symmetry in the Standard Model and the
weak gauge group (i.e. SU(2)) coincide. Thus, for every gauge-dependent multiplet there exists a
gauge-invariant multiplet, on which the masses and degeneracy pattern can be mapped. In general
GUTs, including our simplified models, this is not the case. As a consequence, there is generically
no one-to-one correspondence, and thus the spectrum differs qualitatively [4, 5]. Moreover, if
multiple breaking patterns are possible just by a choice of gauge, it is not even clear what should
be mapped to the physical spectrum at all [4]. We explore both possibilities in the following using
lattice simulations to avoid performing an expansion, and will afterwards analyse to which extent
the results can be interpreted, or even determined, using the FMS mechanism.

2.3 Lattice formulation

To this end, we employ lattice simulations. We perform simulations of the theory on a four-
dimensional euclidean lattice of volume + = !4. The discretization of the theory stated in eqs. (1)
and (14) is given by the following action

( =
∑
G

V

[
1 − 1

3

∑̀
<a

Re
[
tr

[
*`a (G)

] ] ]
+ (8q (9)

(�q = W [i†i − 1]2 + i†i − 2^
4∑̀
=1
i†(G)*` (G)i(G + ˆ̀) (10)

(�q = W
[
2 tr

[
Σ(G)2

]
− 1

]2 + 2 tr
[
Σ(G)2

]
− 2^

4∑̀
=1

tr
[
Σ(G)*` (G)Σ(G + ˆ̀)*` (G)†

]
(11)
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with V the gauge coupling, ^ the hoping parameter, W the quartic coupling and the standard
conventions for the plaquette*`a (G). The lattice parameters are related to the continuumparameters
by V = 6/62, 02`2 = (2 − 4W)/^ − 8 and _ = 8W/^.

The simulations used a heatbath algorithm for the link updates [11]. In the fundamental case
an exact heatbath algorithm can be achieved by a suitable modification of the staples to incorporate
the interaction term. For the adjoint case an additional Metropolis step has been used to account
for the interaction. The scalar updates were performed as a generalized pseudo-heatbath method
like the one proposed in [12]. Here we solve the resulting cubic equation in this update [12, eq.
(C.43)] exactly, to obtain a higher acceptance rate in areas where ^ becomes large. A configuration
is obtained after one full sweep, which consists of five pure link sweeps followed by one scalar
sweep. For the adjoint case additional overrelaxation sweeps for both the links and the scalar fields
have been performed. To ensure decorrelation, sufficient configurations have been dropped for
thermalization andin between measurements have been dropped, yielding an autocorrelation time
of 1 for local quantities like the plaquette. The results were obtained from a combination of many
individual runs.

3. The fundamental case

3.1 Predicted spectra

m
as
s

0

<0

<�

<1
ℎ

2<0

Perturbation theory
scalar vector

Gauge-invariant
U(1)-singlet
scalar vector

U(1)-non-singlet
scalar & vector

1May have any energy

Figure 1: The expected spectrum at tree level obtained through standard perturbation theory (left) differs
qualitatively from that of the explicitly gauge invariant FMS approach (right).

Figure 1 shows the perturbative spectra. The mass of the remaining Higgs particle can be
selected arbitrarily, and there are also three massless gauge bosons in the adjoint representation of
the unbroken SU(2) subgroup, two pairs of degenerate massive gauge bosons in the fundamental
and anti-fundamental (which coincide) representation of SU(2) with mass <0, and a singlet of
SU(2) with mass <� =

√
4/3<0.

The physical spectrum, on the other hand, cannot be classified in terms of the gauge symmetry
[4]. Rather, it can only be classified according to the global U(1) symmetry. Thus, there can only
be either singlets or non-singlets. Furthermore, because of the group structure – and similarly to
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QCD – any non-singlet gauge-invariant state carries at least three times the U(1) charge of the
scalar field. Thus, besides the absence of degeneracies, the absence of fractional U(1) charges in
the spectrum are unique consequences of requiring gauge symmetry2.

In the uncharged sector the FMS mechanism can be used in a straightforward way to determine
the spectrum [8]. This is shown in figure 1, which shows a scalar of the samemass as the elementary
Higgs and a vector particle with the same mass as the singlet elementary gauge boson. The latter
is not a coincidence, but can be traced back to the breaking pattern in the BEH mechanism [5]. In
particular, the theory is gapped, in contrast to the perturbative result. In the usual GUT scenarios,
gapping is relegated to presumed strong interactions in the unbroken subsector [1]. Exploratory
lattice investigations in the past [6] supported the FMS mechanism result. These also showed no
hint for residual strong interactions within systematic uncertainties.

The situation is more involved in the charged sector3. Bose statistics together with the group
theory of SU(3) imply that the simplest operators in the charged sector, at least for scalars and
vectors, do not reduce to single-particle operators at leading order of the FMS expansion, but
involve more fields [4]. This is also true for other uncharged channels, and in that case the emerging
states are potentially scattering states [4, 5]. However, since the U(1) charge is conserved, the
lightest state in this channel is necessarily stable, and cannot be a scattering state. A possibility
is to interpret the result in a constituent particle model, similar to the quark model. This would
imply that the charged scalar and vector should be degenerate in mass, and have twice the mass of
non-singlet gauge bosons, i. e. 2<0 [4]. This is also shown in figure 1. First lattice results suggest
that, at least in the vector channel, this may indeed be adequate [6].

3.2 The spectrum on the lattice

The spectrum of the theory is thus currently the primary interesting objective. The exploratory
investigations [6, 14] only covered a very limited set of quantum number channels. We expand this
to all singly charged and uncharged channels with any �% up to � = 2. In addition, the uncharged
channels have defined charge parity �, and we consider all possibilities here as well. Considering
only � ≤ 2 is based on the prejudice that the mass increases with increasing �, as it does in QED and
QCD. Moreover, experiments usually only search for particles with � ≤ 2, i. e. up to graviton-like
particles, and hence these are also the experimentally most interesting channels. Given that we
expect most relevant features to be applicable to realistic theories, this appears a suitable setting.

Constructing operators in this theory is quite similar as in QCD. We can have either pure gauge
boson operators, akin to glueballs, or operators involving the scalar field. The latter are hadron-
like and can be divided into meson-like operators involving scalars and antiscalars or baryon-like
operators with multiples of three scalars (or antiscalars). Only the latter can carry a non-vanishing
U(1) charge. Since glueball-like operators have shown no tendency to have appreciable overlap
with light states, we concentrate on hadron-like operators.

2There is a long history about the (im)possibility of constructing gauge-invariant fractional charges in QCD, which
essentially applies verbatim to the present case: see [13] for an overview.

3Note that we do not consider the implications of a broken U(1) symmetry, which is even more involved.
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Generalizing from the QCD case in [15], we consider the hadron-like gauge-invariant operators

$"`1,...`# = i
†�`# ...�`1i (12)

$�{`8 }, {a8 }, {d8 } = n012
(
�`#` ...�`1i

)
0

(
�a#a ...�a1i

)
1

(
�d#d ...�d1i

)
2

(13)

with # ≤ 3 and #` + #a + #d ≤ 3. The operators $" are uncharged and the operators $�

are charged. Operators of defined �% (�) are then obtained from a Clebsch-Gordan construction.
Subduction is then used to create defined lattice representations of the operators. In addition, we
included a couple of further operators in some channels, which are generalized from [6, 16, 17].
In some channels these operators do not provide a non-vanishing result. Here, we constructed
scattering operators from these operators, assuming that they will eventually provide also sufficient
overlap with the ground-state. Details will be presented elsewhere [18].

am

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

++0 -+0 +-0 --0 ++1 -+1 +-1 --1 ++2 +-2 -+2 --2 +0 -0 +1 -1 +2 -2

U(1) uncharged

U(1) charged

Spectrum for SU(3)+fundamental Higgs

Figure 2: The spectrum on the lattice at a fixed volume of 164 at V = 8.433600, ^ = 0.488003, and
W = 9.544000. If no box is present no statistically significant signal was yet observed in the channel. The
dotted line on the left-hand side gives the first scattering state from the lightest particle in the uncharged
sector, and on the right-hand side for the lightest charged state together with an uncharged vector. The
dashed-dotted line gives the prediction for the charged vectors and scalars.

The implementation of the operators is straightforward. We enlarge the operator basis by
using smearing as in [6], through a combination of stout smearing for the links and APE smearing
for the scalar fields. In many channels the correlators are quite noisy. Still, in many channels
suitable plateaus can be identified and masses extracted. A preliminary result of the spectrum at a
fixed volume of 164 is shown in figure 2. Where available, the results agree with [6], which is an
independent verification as both codes have been developed separately.

It is visible that the lightest uncharged state is the vector, following the same systematics as
previously observed [6, 17]. The uncharged scalar is compatible with a pure scattering state, and
for every other channel with a statistically significant signal the states are even heavier.

In general we observed the U(1)-charged states to be heavier than uncharged ones, which is
consistent with expectations from FMS for theories of this kind. The lightest state identified is an
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axial vector, which had previously not been considered in the spectroscopy and the FMS approach.
While this state is still in qualitative agreement with the broad picture of the perturbative FMS
expansion predictions, it is also substantially heavier than the leading order constituent model. The
vector, which has been previously observed to be in agreement with the prediction [6], is even
heavier. Since the charged states show very strong volume dependence [6], the systematic control
needs to be improved before any conclusions can be drawn.

4. The adjoint case

In the adjoint case for # ≥ 3 a new feature arises, the existence of multiple possible breaking
patterns. This has a peculiar consequence. At tree-level in perturbation theory, it is possible to
realize different patterns by choice of the vacuum expectation value. While this may change at
higher orders [19], this indicates a certain arbitrariness. It is not clear, whether this holds true
beyond perturbation theory [4]. However, this is decisive, as the FMS prediction for the spectrum
qualitatively depends on which pattern is realisable. That appears odd at first sight, as this seems
to be gauge-dependent. As will be seen below, this is not the case, in a quite non-trivial way. Still,
this implies that understanding this non-perturbatively is required.

To this end, we specialize here to # = 3. In this case our potential has the general form

+ = −`2 tr
[
Σ2] + _ tr

[
Σ2]2 (14)

if the global Z2 symmetry is not explicitly broken. For # > 3, the potential gets more involved [4].
It is important to note here that symmetry breaking on the lattice implies that the relevant

configurations show long-range order per configuration. To identify the breaking thus requires to
identify the ordering on a configuration-by-configuration basis by suitable observables.

4.1 Global symmetry

Physically, the only relevant symmetry4 is the globalZ2 symmetry, as it encodes gauge-invariant
physics. A suitable gauge-invariant order parameter is given by

OZ2 =

〈[
1
+

∑
G

detΣ(G)
| detΣ(G) |

]2〉
. (15)

On a finite lattice, this never vanishes. Thus, to determine its fate it is necessary to extrapolate it
to infinite volume in actual calculations. Then, the symmetry is unbroken only when the quantity
becomes zero in the infinite-volume limit. Otherwise it is spontaneously broken.

Note, however, that without explicit symmetry breaking the path integral on the lattice still
sums for every field configuration {Σ} also over the one {−Σ}, and thus 〈Σ〉 = 0 is necessarily true.
Therefore an order parameter like eq. (15) is needed.

The result for the phase diagram is shown in figure 3. It is clearly visible that the phase diagram
separates into two phases, one with and one without spontaneous breaking of the Z2 symmetry.

4There is formally also the Z3 symmetry of the gauge sector. As it acts trivially on the continuum theory, it does not
play a dynamical role in this limit, and is therefore ignored.
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SU(2) × U(1)

U(1) × U(1)∗
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) ×

U
( 1
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Figure 3: The non-perturbative phase diagram of the SU(3) + adj. theory shows a clear separation into
a Z2-broken and -unbroken region. These regions coincide also with regions where the gauge-symmetry
is un-/broken, see section 4.2. In the broken region we observe only one general breaking pattern. In the
limiting cases close to the phase transition and the low-W/high-^ region, the breaking angle approaches slowly
the special breaking patterns.

4.2 Local symmetry

We start by following the path of the standard BEH mechanism. Therefore the scalar field
is split again into a non-vanishing vacuum expectation value (vev) F > 0 pointing into a certain
direction Σ0 and fluctuations around it

Σ(G) = 〈Σ〉 + f(G) = FΣ0 + f(G) (16)

9
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SU(2) × U(1) U(1) × U(1)∗ U(1) × U(1)
eigenvalues∗ {_, _,−2_} {_,−_, 0} {_1, _2,−(_1 + _2)}

vev-alignment
(
Σ3

0,Σ
8
0

) ±(0, 1) ±(1, 0)
other±

(√
3/2,±1/2

)
±
(
1/2,±

√
3/2

)
breaking angle \0

(2=+1) c
6 for = = 0, . . . , 5 2=c

6 for = = 0, . . . , 5 other
∗ up to permutation, and where _8 are nonzero and distinct (i.e. _1 ≠ _2).

Table 1: Symmetry breaking patterns depend on the direction of the chosen vev, \0. In the general case
there are two distinct nonzero parameters defining the eigenvalues and the vev is invariant under U(1) ×U(1)
transformations. For twelve special values of \0 the parameters are (anti-)degenerate, leading either to an
SU(2) × U(1) symmetry or to a special case of the U(1) × U(1) pattern, denoted by U(1) × U(1)∗.

Note that by specifying FΣ0 we completely fix the direction of the vev. This has far-reaching
consequences to be discussed below. For perturbation theory as well as the FMS mechanism to
work it is necessary that fluctuations around FΣ0 are sufficiently small.

The difference compared to the fundamental case is that more than one breaking pattern is
possible [20], i. e. there is more than one unitarily inequivalent choice for FΣ0. Since Σ0 is
diagonalisable and traceless, all possible directions of the vev are parametrized by an angle \0 in
the two-dimensional Cartan of SU(3), with

Σ0 = cos(\0))3 + sin(\0))8 . (17)

Depending on \0, Σ0 can have either two or three distinct non-zero eigenvalues, giving a breaking
pattern of SU(2) × U(1) or U(1) × U(1) [4]. Table 1 lists the possible patterns. The choice of
breaking pattern is thus equivalent to the choice of the angle \0.

To implement the condition in eq. (16) requires gauge-fixing, which leads to some subtleties.
Consider for the moment unitary gauge, which locally diagonalizes Σ(G). Here it is possible
to impose a strong ordering, in the sense that the diagonal elements are sorted by size. As a
consequence the vacuum expectation value〈

1
+

∑
G

Σ(G)
〉

(18)

is necessarily non-vanishing if Σ(G) is non-zero in any sizeable fraction of the volume. Long-range
order is thereby enforced on the scalar field, and it appears as if a BEH effect is present throughout
the phase diagram. This kind of gauge-fixing can be implemented by locally diagonalizing all
Σ(G), which is numerically straightforward. We have done this, and confirmed this statement in our
simulations.

The reason is, of course, a trade-off when gauge-fixing. By enforcing order on the scalar field,
any disorder is transferred to the gauge fields, which therefore will strongly fluctuate. Thus, while
a vacuum condensate arises in this way, the FMS mechanism may not work, as the gauge field
fluctuations invalidate perturbation theory.

There are (at least) two options to avoid imposing long-range order on the scalar field: the
results tested in unitary and Landau–’t Hooft gauges both coincide. The first possibility is as follows:

10
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instead of enforcing a strong ordering of the eigenvalues, we note that the breaking patterns as listed
in table 1 do not rely on the ordering of the eigenvalues. However, long-range ordering implies that
the ordering of the eigenvalues need to be correlated over long distances. Thus, we fix to unitary
gauge, but only admit gauge transformation from the coset SU(3)/(3, where (3 is the permutation
group of order three. In practice, diagonalization algorithms do not ensure such an ordering. To
enforce it, we determine before diagonalization an angle \ by taking the trace of the scalar field
normalized to unit determinant with )8, and then extract an angle in analogy to eq. (17). We then
reorder the eigenvalues after diagonalization such that for the gauge-fixed scalar field, which has the
normalized form eq. (17), the resulting angle \0 coincides with the original one within an interval
of c/6 within the sectors listed in table 1.

Of course, keeping the order free implies again that for every configuration there exists another
configuration with exactly opposite ordering, due to the Z2 symmetry. Thus, in this case the vev in
eq. (18) vanishes. The detection of the long-range order is then possible using [8, 21]〈(

1
+

∑
G

Σ(G)
)2〉

. (19)

This allows to unambiguously identify the presence of long-range ordering. But perturbation
theory, and the FMS mechanism, rely on a unique value for the vacuum expectation value. Thus, to
eventually obtain configurations, which are fixed to the same gauge as in the continuum, requires,
after establishing that for a given set of lattice parameter long-range ordering persists, the eigenvalues
to agree with eq. (16). Thus, this is a two-step process on the lattice.

The other possibility is to use Landau–’t Hooft gauge [14]. Since Landau gauge enforces
maximum smoothness on the gauge fields locally [22] this largely prevents local correlations being
transferred to the gauge fields. As a consequence, it is not possible to obtain a non-vanishing vacuum
expectation value everywhere, but only where long-range ordering exists. Consequently, we find
in the numerical simulations that the results in Landau-’t Hooft gauge agree with the ones from
gauge-fixing to unitary gauge restricted to SU(3)/(3. Again, only after fully fixing the ordering of
the eigenvalues, now for the spatially averaged vev, it makes sense to compare to continuum results.

Finally, we also want to know which breaking pattern is realised for a given set of parameters.
In any finite calculation no true degeneracies will arise for the eigenvalues, so formally every result
looks like the U(1) × U(1) pattern. Only when approaching an infinite system it can approach
either of the other patterns. To check this, we calculate the breaking angle \0 as given in eq. (17)
and then extrapolate. This quantity can be obtained either directly from the gauge-fixed scalar field
or indirectly from gauge invariant quantities like

∑
G tr

[
Σ(G)3

]
and

∑
G tr

[
Σ(G)2

]
. It turned out

that both ways yield the same results within errors. Furthermore it needs to be mentioned that the
breaking patterns are periodic in terms of the breaking angles and therefore it is sufficient to restrict
the angle to the range \0 ∈ [0, c/6], where the lower end is the U(1) ×U(1)∗-pattern and the upper
end gives the SU(2) × U(1) pattern.

In fig. 4 the result for the phase diagram is shown for a specific value of V compared with
the tree-level prediction from perturbation theory. It can immediately be seen that already the
general separation into the SU(3)-broken and SU(3)-unbroken regions differ quite substantially.
For simplicity only a few points for the non-perturbative phase diagram in the unbroken region are

11
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(a) perturbative tree-level phase diagram
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(b) non-perturbative phase diagram (V = 6)

Figure 4: The V-independent perturbative tree-level phase diagram (left) and the non-perturbative phase
diagram (right) differ in the location of phases and the observed breaking patterns.

shown, but the whole blue shaded area has been checked carefully. The second quite substantial
difference is that only one breaking pattern is realised which which happens to be the general
U(1) × U(1) case.

Extending this kind of analysis to different values of the gauge coupling V allows us to get
an impression of the full non-perturbative phase diagram in the parameter space. In fig. 3 the
so-obtained phase diagram is shown. The two different phases have been obtained from the
gauge invariant Z2-breaking order parameter eq. (15) and from the gauge-symmetry breaking order
parameter eq. (19) in a fixed gauge. In all of the simulated points in the parameter space we observed
a one-to-one correspondence between Z2- and gauge-symmetry breaking. Apart from that we also
observe a clear separation into the ordered and disordered phases.

Again, for the full phase diagram we only observed the general U(1) ×U(1) breaking pattern,
but one can make two observations regarding the breaking angle based on figs. 3 and 4b. Near
the phase transition the breaking angle is always very small (indicated by almost white rectangles)
and it continuously increases when going deeper into the BEH-like region. The other observation
to be made is by going to larger ^- and smaller W-values the breaking angles approach c/6 which
corresponds to the SU(2) ×U(1) breaking pattern. What we want to emphasize here is that we have
not observed either of the special U(1) × U(1)∗- or the SU(2) × U(1)-breaking pattern. However,
the gradient of the breaking angle indicates that in the limiting cases, i.e. at the phase transition
and in the low-W/high-^ region, the special patterns may be realised.

The apparent connection to the Z2 phases can be now understood in the following way. Because
its order parameter eq. (15) depends only on the sign of the determinant, any information about
long-range order in the scalar field is lost, as this depends on the relative ordering of the eigenvalues.
However, the U(1) ×U(1)∗ case implies a vanishing determinant, due to one zero eigenvalue. Thus,
in case of a long-range ordering of this type, Z2 symmetry would be necessarily intact.

Conversely, for the SU(2) × U(1) case the determinant is also long-range ordered. Thus, this
pattern can only be realised if Z2 is broken. Finally, in the U(1)×U(1) case the determinant depends
non-linearly on the relative sign of the two eigenvalues. If one of the eigenvalues is relatively large
and the other one is asymmetrically distributed around zero, the determinant can fluctuate wildly in
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configurations, but there is still long-range order possible for the eigenvalues. Hence, in total there
is no way to decide a-priori from the status of the Z2 symmetry whether a BEH effect is present,
at most a subset of the the possible patterns can be deduced, if one is present. Thus, it is highly
non-trivial that a correspondence is found.

Finally, it should be remarked that for NLO estimates in three dimensions only the SU(2)×U(1)
pattern [19] has been found. However, this occurred at very small values of W, where we also see
that this pattern may emerge5.

From these results it can be inferred that we have a distinct and unique possible breaking
pattern to implement a BEH effect. We can thus uniquely identify the type of predictions of the
FMS mechanism applying, and are thus at a useful starting point to test them.

5. Conclusions and outlook

We have extended previous investigations of prototypes of GUTs using a manifestly gauge-
invariant setup on the lattice. These are important steps to establish an augmentation of perturbation
theory to perform successful and manifestly gauge-invariant phenomenology for the wide range of
parameter sets not accessible by lattice simulations alone.

On the one hand, we have started to substantially extend the number of quantum number
channels investigated for the fundamental case. The patterns we observe are in agreement with
those expected in the uncharged sector. However, the charged sector offers some surprises. More
systematic investigations will be necessary to establish a firm picture and to fully understand how
to use the FMS mechanism to predict reliably the charged spectrum. This will be a next step [18].

For the adjoint case we could clarify the situation with multiple breaking patterns. We find
that a unique pattern prevails non-perturbatively. While the identification of the pattern is so far
tied to lattice methods, this allows to uniquely provide FMS-mechanism predictions, disentangling
previous ambiguities [4]. Further systematics will ultimately tell under which conditions breaking
patterns of any type can be realized [18].
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