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In the Hamiltonian picture, free spin-1/2 Dirac fermions on a bipartite lattice have an 𝑂 (4) (spin-
charge) symmetry. Here we construct an interacting lattice model with an interaction 𝑉 , which
is similar to the Hubbard interaction but preserves the spin-charge flip symmetry. By tuning the
coupling𝑉 , we show that we can study the phase transition between the massless fermion phase at
small-𝑉 and a massive fermion phase at large-𝑉 . We construct a fermion bag algorithm to study
this phase transition and find evidence for it to be second order. Numerical study shows that the
universality class of the transition is different from the one studied earlier involving the Hubbard
coupling 𝑈. Here we obtain some critical exponents using lattices up to 𝐿 = 48.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

1Work done in collaboration with Shailesh Chandrasekharan, Ribhu Kaul, and Hanqing Liu
∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:ehuffman@perimeterinstitute.ca
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
0
8

Spin-charge Flip Symmetric Fixed Point Emilie Huffman

1. Introduction

Fixed points that involve relativistic fermions are still a challenge to study nonperturbatively,
especially in two spatial dimensions and higher, with sign problems preventing their numerical study
via quantum Monte Carlo. Additionally, even when sign-problem-free methods to study fermionic
fixed points are available, there is a second challenge involving the expense and efficiency of such
calculations. While there are techniques available for nonperturbatively studying spin systems of
tens of thousands of sites [1], fermionic studies are more often limited to hundreds of sites instead,
limiting what can be learned from finite-size scaling. This is a particularly important obstacle to
clear given that fermions are such a fundamental part of nature, and their interactions are thus of
interest across the subfields of physics, from particle physics to quantum information to condensed
matter physics. It would thus be useful to find new and easy-to-study ways of representing simple
fermionic fixed points, in the vein of de-sign-er Hamiltonians. [2]

With this in mind, we introduce a simple class of 𝑁-flavor Dirac fermion models that possess
the same flavor symmetry as free fermions, and yet also contain interactions. Moreover, these
models are sign-problem-free and straightforwardly simulatable with the Hamiltonian fermion bag
method, with the 𝑁 = 1 case in 2 + 1𝑑 already studied extensively [3, 4]. After discussing the
class of models generally, we focus specifically on the 𝑁 = 2 case in 2 + 1𝑑, which resembles the
microscopic model for the chiral Heisenberg universality class (Hubbard model on a 𝜋-flux lattice),
but contains an additional spin-charge-flip symmetry, making its flavor symmetry 𝑂 (4), which is a
symmetry of physical interest [5]. We present numerical results using the Hamiltonan fermion bag
method to explore the phase transition as a function of its coupling 𝑉 . This proceedings provides
a more detailed discussion of the numerics in [6], along with some additional numerical results to
support our conclusions there, while more details on a corresponding continuum analysis for the
fixed point may be found in [7].

2. Model and Symmetries

We begin with an 𝑁-flavor extension of the 𝑡-𝑉 model in 2 + 1𝑑, given by

𝐻 = −
𝑁∏
𝑎=1

[
𝑡
∑︁
𝑥,𝑑

[𝑥,𝑑

(
𝑐†𝑥,𝑎𝑐𝑥+𝑑,𝑎 + 𝑐

†
𝑥+𝑑,𝑎

𝑐𝑥,𝑎

)
−𝑉

∑︁
𝑥,𝑑

(
𝑛𝑥,𝑎 −

1
2

) (
𝑛𝑥+𝑑,𝑎 −

1
2

)
+ 𝑡2

𝑉

]
, (1)

where 𝑥 = (𝑥1, 𝑥2) is a two-dimensional vector on a square spatial lattice, and 𝑐
†
𝑥 and 𝑐𝑥 are creation

and annihilation operators respectively for an electron on site 𝑥 with flavor 𝑎. The [𝑥,𝑑 factors
induce a 𝜋-flux on the square lattice by their definitions [𝑥,𝑑𝑥

= 1 and [𝑥,𝑑𝑦
= (−1)𝑥1 , where 𝑑𝑥

and 𝑑𝑦 are the unit vectors in the 𝑥- and 𝑦-directions, and 𝑥1 is the 𝑥-component of site 𝑥. While
we have narrowed the focus to 2 + 1𝑑, it is possible to study this model in any dimension using
sign-problem-free quantum Monte Carlo [8, 9], and when 𝑁 = 1 this model is the ordinary 𝑡-𝑉
model (with the addition of the physically unimportant constant 𝑡2/𝑉), which has been extensively
studied using quantum Monte Carlo in [3, 4, 10, 11].
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The addition of the constant 𝑡2/𝑉 to the factors in this family of 𝑁-flavor models has the effect
of allowing us to also write these models in the following simple way:

𝐻=−
∑︁
𝑥,𝑑

exp
(
^[𝑥,𝑑

𝑁∑︁
𝑎=1

(𝑐†𝑥,𝑎𝑐𝑥+𝑑,𝑎+𝑐
†
𝑥+𝑑,𝑎

𝑐𝑥,𝑎)
)
, (2)

where we have 2 tanh ^/2 = 𝑉/𝑡, as shown in [7, 12]. This form has the advantage of making some
of the symmetries of these models more obvious, as it is clear that when (2) is expanded out, every
term is a power of the free fermion Hamiltonian 𝐻0 = −𝑡∑𝑥,𝑑

∑𝑁
𝑎=1 [𝑥,𝑑

(
𝑐
†
𝑥,𝑎𝑐𝑥+𝑑,𝑎 + 𝑐

†
𝑥+𝑑,𝑎

𝑐𝑥,𝑎

)
,

which at low energies describes 𝑁 four-component massless Dirac fermions in the continuum limit.
In the Majorana basis it is clear that this family of models possess an 𝑂 (2𝑁) flavor symmetry [3].

While the simulation methods used in these proceedings are applicable to any 𝑁 in this family
of models, here we will focus on the 𝑁 = 2 model in particular, which we call 𝐻𝑆𝐶 , and is given by

𝐻SC=−
∏
𝑠=↑,↓

[
𝑡
∑︁
𝑥,𝑑

[𝑥,𝑑

(
𝑐†𝑥,𝑠𝑐𝑥+𝑑,𝑠+𝑐

†
𝑥+𝑑,𝑠

𝑐𝑥,𝑠

)
−𝑉

∑︁
𝑥,𝑑

(
𝑛𝑥,𝑠−

1
2

) (
𝑛𝑥+𝑑,𝑠−

1
2

)
+ 𝑡

2

𝑉

]
=−

∑︁
𝑥,𝑑

exp
(
^[𝑥,𝑑

∑︁
𝑠=↑,↓

(𝑐†𝑥,𝑠𝑐𝑥+𝑑,𝑠+𝑐
†
𝑥+𝑑,𝑠

𝑐𝑥,𝑠)
)
.

(3)

For small values of ^, the fermion bilinear terms reproduce free fermions with 𝑡𝑖 𝑗 = ^[𝑖 𝑗 , and
the higher order fermion interactions are small. Because we are looking at two flavors of fermions,
(3) can be written in terms of powers of free fermion terms that correspond to 2 four-component
massless Dirac fermions in the continuum, and the Hamiltonian possesses 𝑂 (4) flavor symmetry in
addition to the usual lattice symmetries and time reversal. We can break down this 𝑂 (4) symmetry
into 𝑆𝑈 (2)𝑠 × 𝑆𝑈 (2)𝑐 × Z𝑠𝑐2 symmetries [6]. 𝑆𝑈 (2)𝑠 is the well-known spin rotational symmetry,
which is generated by ®S𝑥 = 1

2𝑐
†
𝑥𝑎 ®𝜎𝑎𝑏𝑐𝑥𝑏, and 𝑆𝑈 (2)𝑐 is the well-known “hidden” charge symmetry,

which is generated by ®C𝑥 = 1
2 (Z𝑥 (𝑐

†
𝑥↑𝑐

†
𝑥↓ + 𝑐𝑥↓𝑐𝑥↑),−𝑖Z𝑥 (𝑐†𝑥↑𝑐

†
𝑥↓ − 𝑐𝑥↓𝑐𝑥↑), 𝑐†𝑥↑𝑐𝑥↑ + 𝑐

†
𝑥↓𝑐𝑥↓ − 1),

with Z𝑥 = ±1 depending on whether the site is even or odd. Finally, Z𝑠𝑐2 is a spin-charge flip
symmetry defined as F 𝑐𝑥↓F † = Z𝑥𝑐

†
𝑥↓ under which the generators of spin and charge rotations are

interchanged, ®S𝑥 ↔ ®C𝑥 . Because of this symmetry between spin and charge we have given this
Hamiltonian the name 𝐻𝑆𝐶 to keep the spin-charge-flip symmetry Z𝑠𝑐2 in mind.

We note that while the symmetries listed above are all seen in free fermions, our model 𝐻𝑆𝐶

is not free and contains 4-, 6- and 8-fermion interactions. However, by maintaining the 𝑂 (4)
symmetry we have an enhanced symmetry compared to the most often studied interaction that is
added to 𝑁 = 2 free fermions: the Hubbard-𝑈 term, 𝐻𝑈 = 𝑈

∑
𝑥 (𝑛𝑥↑ − 1

2 ) (𝑛𝑥↓ −
1
2 ). This term still

preserves the 𝑆𝑈 (2)𝑠 and 𝑆𝑈 (2)𝑐 symmetries mentioned above (which form an 𝑆𝑂 (4) symmetry),
but is odd under the Z𝑠𝑐2 spin-charge flip operation. It is well-known that repulsive-𝑈 interactions
favor an antiferromagnetic (AFM) “spin” order parameter, and attractive-𝑈 interactions favor a
combined charge-density wave(CDW)/superconducting “charge” order parameter. Since the free
fermion portion realizes a 2 + 1𝑑 Dirac dispersion, long range order sets in at a finite-|𝑈 | phase
transition which is described by the “chiral Heisenberg” Gross-Neveu-Yukawa fixed point that has
been the subject of intense numerical study [13]. Here we look into the nature of the quantum
critical phenomena when we consider (3) which preserves the full symmetry of the hopping problem,
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Figure 1: An example configuration from the partition function sampling space. Each bond corresponds to
an 𝐻𝑥,𝑑 operator. Because

[
𝐻𝑥,𝑑 , 𝐻𝑥′,𝑑′

]
= 0 when they share no sites in common, if two bonds do not touch

each other in space, their corresponding operators commute. This property, which generalizes to a concept
of locality, is key to the application of the Hamiltonian fermion bag method.

including the crucial Z𝑠𝑐2 symmetry, which is absent in the usual Hubbard formulation. We present
numerical evidence that the phase transition between Dirac semi-metal and spin-charge flip broken
phase is continuous and in a new universality class.

3. Algorithm

A nice feature of the Hamiltonians in the family given by (1) or (2) is that we can use an efficient
fermion bag QMC algorithm to study them [3, 4]. We can see this immediately by comparing the
Hamiltonian form from (2) to reference [4], and seeing that it satisfies key criteria for the algorithm
to be applicable: (i) the Hamiltonian can be written as a sum of exponentiated fermionic bilinear
terms, and (ii) such terms are local in terms of their degrees of freedom (in this case local in terms
of the spatial lattice sites).

The following is a brief summary of how the fermion bag method works, applied to the 𝐻SC
model in particular. The partition function 𝑍 = t𝑟𝑒−𝐻SC/𝑇 is first expanded as

𝑍 =
∑︁
𝑘

∫
[𝑑𝜏] (−1)𝑘T𝑟 [𝐻SC(𝜏𝑘)...𝐻SC(𝜏2)𝐻SC(𝜏1)] . (4)

Here the notation
∫
[𝑑𝜏] denotes time-ordered integration for times 1/𝑇 ≥ 𝜏𝑘 ≥ · · · ≥ 𝜏2 ≥ 𝜏1 ≥

0. The Hamiltonian 𝐻SC is not time-dependent and so 𝐻SC(𝜏) = 𝐻SC. The expansion can be
derived from the continuous-time interaction representation where 𝐻0 = 0 and 𝐻int = 𝐻SC, and
also resembles the stochastic series expansion [12]. The algorithm then involves exploring a
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configuration space made up of the terms in the expansion, which we can rewrite as

𝑍 =
∑︁
𝑘

∑︁
[𝑥,𝑑]

∫
[𝑑𝜏] (−1)𝑘Tr

[
𝐻SC,𝑥𝑘 ,𝑑𝑘

(𝜏𝑘) ...𝐻SC,𝑥2,𝑑2
(𝜏2) 𝐻SC,𝑥1,𝑑1

(𝜏1)
]

𝐻SC,𝑥,𝑑 = exp
(
^[𝑥,𝑑

∑︁
𝑠=↑,↓

(𝑐†𝑥,𝑠𝑐𝑥+𝑑,𝑠 + 𝑐
†
𝑥+𝑑,𝑠

𝑐𝑥,𝑠)
)
.

(5)

Figure 1 gives a pictorial representation (though simplified to one spatial dimension) of a single
term in the expansion: a configuration where 𝑘 = 12. Because all 𝐻SC,𝑥,𝑑 are expentiated fermion
bilinear operators, we can then make use of the BSS formula as well as locality to compute
transition probabilities as small determinants. While the method is comparatively limited compared
to traditional auxiliary field methods in terms of which Hamiltonians are simulatable, it can be
significantly more powerful than such methods when it is applicable [3], allowing access to large
lattices with comparatively few computing hours to get critical exponents (up to 10, 000 sites in the
discrete-time formulation and 4, 096 in the continuous-time formulation using on the order of a few
million core-hours each).

4. Results

Using the Hamiltonian fermion bag algorithm in continuous time we compute two correlation
functions of order parameters for 𝐻SC,

𝐶𝑆 = 2⟨S𝑧

𝑥 (0)S𝑧

𝑥 (1) ⟩, 𝐶𝑈 = ⟨U𝑧

𝑥 (0)U𝑧

𝑥 (1) ⟩. (6)

Here 𝐶𝑆 picks up the 𝑆𝑈 (2)𝑠 Néel order using the antiferromagnetic spin order parameter S𝑧
𝑥 =

𝑛𝑥,↑ − 𝑛𝑥,↓, and 𝐶𝑈 measures the breaking of the spin-charge symmetry through the local Hubbard
operator U𝑥 = (𝑛𝑥↑ − 1

2 ) (𝑛𝑥↓ −
1
2 ), which is odd under Z𝑠𝑐2 . The sites in the correlation functions

are 𝑥 (0) = (0, 0) and 𝑥 (1) = (𝐿/2, 0) and we assume 𝐿/2 even. The QMC simulations are done at
finite inverse temperature 1/𝑇 = 𝐿, and we work with the tuning parameter 𝑉/𝑡 = 2 tanh ^

2 . Table
1 gives the raw data.

𝑉/𝑡 𝐿 = 12 𝐿 = 16 𝐿 = 20 𝐿 = 24 𝐿 = 28 𝐿 = 32 𝐿 = 48
𝐶𝑆

1.480 0.00226(2) 0.00118(2) 0.00069(2) 0.00041(1) 0.000279(8) 0.000182(7) −
1.500 0.00238(3) 0.00126(2) 0.00077(2) 0.00045(1) 0.00031(1) 0.00023(1) 0.000078(6)
1.520 0.00244(4) 0.00134(4) 0.00078(2) 0.00053(2) 0.00035(2) 0.00027(2) 0.00011(1)
1.540 0.00250(4) 0.00140(3) 0.00086(2) 0.00061(3) 0.00038(1) 0.00033(1) −
1.560 0.00276(6) 0.00148(3) 0.00087(3) 0.00065(2) 0.00045(2) 0.00037(2) −
1.600 0.00299(3) 0.00172(2) 0.00113(3) 0.00089(4) 0.00071(3) 0.00068(3) −

𝐶𝑈

1.515 0.00112(5) 0.00060(2) 0.00031(2) 0.000178(7) 0.000108(5) − −
1.600 0.00197(5) 0.00110(3) 0.00085(3) 0.00076(5) 0.00065(5) 0.00063(4) −

Table 1: The QMC correlation function data that is used in the figures.
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Figure 2: Characterization of the massive phase from QMC and field theory. The plot shows finite size
scaling data for 𝐶𝑆 and 𝐶𝑈 using the fermion bag QMC method for a coupling constant 𝑉/𝑡 = 1.6. Both
correlation functions scale to a finite value in the thermodynamic limit indicating that the system breaks the
Z𝑠𝑐2 Ising symmetry as well as the SU(2) symmetry of spin and charge.

We first investigate the nature of the massive phase in our lattice model, 𝐻S𝐶 . We work at a
coupling𝑉/𝑡 = 1.6, which is deep in the massive phase. As shown in Figure 2, we find a finite value
of 𝐶𝑈 in the thermodynamic limit, which indicates that the Ising symmetry, Z𝑠𝑐2 , is spontaneously
broken. Further we find that 𝐶𝑆 also scales to a finite value in the thermodynamic limit, which
implies Néel order and a broken 𝑆𝑂 (4) symmetry (coming from the 𝑆𝑈 (2)𝑠 × 𝑆𝑈 (2)𝑐 symmetry).
Together we interpret this to imply that the system has to spontaneously choose between the charge
and the spin sector, breaking Z𝑠𝑐2 , and forming either a Néel state or a superconductor/CDW state
which breaks the corresponding SU(2) symmetry.

Next, we study the nature of the phase transition between the Dirac semi-metal and the massive
phase. Figure 3 shows the data for 𝐶𝑆 as a function of system size 𝐿. For large values of 𝐿, there is
clear evidence that 𝐶𝑆 converges to a nonzero constant at the coupling 𝑉/𝑡 = 1.6 (massive phase),
while it scales to zero at the coupling 𝑉/𝑡 = 1.48 (Dirac semimetal). A good fit to the power-
law 𝐶𝑠 = 0.67/𝐿2.25 for 12 ≤ 𝐿 ≤ 48 with a 𝜒2 = 0.95 is found at the coupling 𝑉/𝑡 = 1.52 as
expected at a quantum critical point. A multi-parameter scaling fit of all our data except for 𝐿 = 12,
to the form 𝐶𝑆 = 𝐿−(1+[) 𝑓 ((𝑔 − 𝑔𝑐) 𝐿1/a) with 𝑓 (𝑥) = 𝑓0 + 𝑓1𝑥 + 𝑓2𝑥

2 + 𝑓3𝑥
3 yields [ = 1.38(6),

a = 0.78(7), 𝑉𝑐/𝑡 = 1.514(8), 𝑓0 = 0.96(15), 𝑓1 = 0.073(26), 𝑓2 = 0.0012(43), 𝑓3 = 0.0026(32)
with a 𝜒2 = 1.25. The large value of [ clearly establishes that this criticality is not captured by the
chiral-Heisenberg theory, where [ computed numerically is approximately 0.45. [13]

While the data so far has suggested that there is a second-order phase transition and that the
𝑂 (4) symmetry has been broken at couplings above𝑉𝑐/𝑡, and we also see more specifically that deep
in the broken phase both the Z𝑠𝑐2 and 𝑆𝑂 (4) symmetries are broken because the correlations𝐶𝑈 and
𝐶𝑆 saturate as seen in Figure 2, we also cannot completely rule out there being some intermediate
phase where only the 𝑆𝑂 (4) symmetry is broken, or only the Z𝑠𝑐2 symmetry is broken. Using

6
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Figure 3: The plot on the left shows 𝐶𝑆 as a function of 𝐿 on a log-log scale up to 𝐿 = 48 for various
values of 𝑉/𝑡. For large values of 𝐿 we find that 𝐶𝑆 decays to zero when 𝑉/𝑡 = 1.48, while it saturates to a
constant when𝑉/𝑡 = 1.60, with a phase transition around𝑉𝑐/𝑡 ≈ 1.52 where the data fits to 𝐶𝑆 ≈ 0.67/𝐿2.25

(straight line in the plot). The plot on the right shows that all of the data (after dropping 𝐿 = 12) collapse
to the universal scaling function discussed in the text with [ = 1.38(6), a = 0.78(7), and 𝑉𝑐/𝑡 = 1.514(8),
providing compelling evidence for a quantum critical point.

12 16 20 24 28 32

10-4

10-3

Figure 4: This plot shows 𝐶𝑈 at the critical coupling 𝑉𝑐/𝑡 = 1.515, as found using the scaling analysis
for 𝐶𝑆 . All lattice sizes except for 𝐿 = 12 are used to find a power law fit 𝐶𝑈 = 𝑎𝐿 𝑝 . Here the fit gives
𝑎 = 2.8(8), 𝑝 = −3.05(9) with a 𝜒2 of 0.2.
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𝑉𝑐/𝑡 = 1.515, which is the critical coupling we found from the scaling analysis for 𝐶𝑆 , we partly
address this question in Figure 4 by plotting data at the critical coupling for 𝐶𝑈 , which is odd under
Z𝑠𝑐2 , but invariant under 𝑆𝑂 (4). Here we see that the data fits well to a power law (𝐶𝑈 ∼ 𝐿−3.05(9)
and does not appear to saturate. This is evidence against there being an intermediate phase that is
𝑆𝑂 (4) symmetric but Z𝑠𝑐2 broken.

5. Conclusions

We have introduced a family of interacting 𝑁-flavor Hamiltonians that is sign-problem-free,
simulatable by the Hamiltonian fermion bag mathod, and possesses an𝑂 (2𝑁) flavor symmetry, just
as free fermions do. We have focused specifically on the case where 𝑁 = 2 and discussed its 𝑂 (4)
symmetry, which consists of spin and charge 𝑆𝑈 (2) symmetries (forming an 𝑆𝑂 (4) symmetry) as
well as a spin charge flip symmetry Z𝑠𝑐2 . We have then shown numerical evidence for a second-order
phase transition that breaks the model’s 𝑂 (4) symmetry. Additionally we have presented numerical
evidence that there is no intermediate phase that is 𝑆𝑂 (4)-symmetric but Z𝑠𝑐2 -symmetry broken.
Using lattices up to 2304 sites in size, we have computed critical exponents for the phase transition
and have found them to be distinct to those in the chiral Heisenburg universality class, making this
a distinct spin-charge flip symmetric fixed point in 2 + 1𝑑.
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