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The tension between the theoretical prediction and the experimental result of the anomalous
magnetic moment of the muon, 0` ≡ (6 − 2)`/2, is one of the long-standing puzzles of modern
particle physics. After the update of the Fermilab E989 experiment in April 2021, the discrepancy
between theory and experiment lies at the 4.2-sigma level. Further possible reduction of the error
on the theory side relies solely on the control over hadronic processes. With recent developments,
it has become possible for lattice QCD to provide competitive predictions on some of the most
important hadronic contributions to 0`. In this talk, theMainz determination of the hadronic light-
by-light (hlbl) contribution to 0` computed with # 5 = 2 + 1 lattice ensembles will be presented.
Although at subleading order in UQED, 0hlbl` was not sufficiently precisely determined in the past
and represented a non-negligible source of uncertainty for the total error budget of 0`. With our
continuum and infinite-volume QED setup, we obtain a value of 0hlbl` = 106.8(15.9) × 10−11 after
an infinite-volume, continuum and chiral extrapolation, with estimates for the contributions of all
five Wick-contraction topologies.
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1. Introduction

The anomalous magnetic moment of the muon (0`) offers a unique opportunity to probe the
validity of the Standard Model of particle physics thanks to the accuracy of its measured value.
After the announcement of the first Fermilab E989 result in April 2021 [1], 0` is known to a
precision of 0.35 ppm, upon performing an average with the measurement of the completed E821
experiment at Brookhaven [2].

The muon, being much heavier than the electron, is more sensitive to hadronic (QCD) physics.
Due to the non-perturbative nature of QCD at low energies, the uncertainty of the current theory
prediction is dominated by the hadronic contributions to 0`. Contrary to the dominant hadronic
contribution, the Hadronic Vacuum Polarization, which is of order O(U2

QED) in the perturbative
QED-coupling counting, the HLbL enters at O(U3

QED) and is a sub-leading contribution. Still,
the rather large relative error of the HLbL contribution to 0` (0hlbl` ) makes a statistically-precise
determination of this quantity necessary. It is thought that 0hlbl` needs to be known at the 10%-level
to allow the theory precision to be comparable to the experimental one.

As of the current theory consensus, dispersive methods gave the more precise estimate for
0hlbl` (see Ref. [3] and references therein). In the past few years, lattice determinations of 0hlbl` have
become competitive with dispersive approaches. The first complete lattice determination of 0hlbl` at
the physical point has been published by the RBC/UKQCD collaboration [4] in a lattice QED+QCD
setup. In this talk, I will present the work of the Mainz group on the determination of the 0hlbl` at the
physical point [5], which is based on a continuum and infinite-volume QED + lattice QCD setup.

2. Position space approach

To compute 0hlbl` , we adopt a setup which treats the QED contribution in the continuum and
infinite-volume and the QCD part on the lattice [6]. More precisely, our master formula reads

0hlbl` =
<`4

6

3

∫
G,H

L [d,f ];`a_(G, H)8Π̂d;`a_f (G, H) , (1)

where L [d,f ];`a_ is a QED kernel,

8Π̂d;`a_f = −
∫
I

IdΠ̃`af_ , Π̃`af_(G, H, I) ≡
〈
9` (G) 9a (H) 9f (I) 9_(0)

〉
QCD , (2)

and 9` is the hadronic component of electromagnetic current, which in # 5 = 2 + 1 quark flavors
equals

9` (G) =
2
3
(D̄W`D) (G) −

1
3
(3̄W`3) (G) −

1
3
( B̄W`B) (G) . (3)

With our approach, the hadronic 4-point function Π̃`af_ is evaluated on the lattice in a pure QCD
background.

The QED kernel requires several multidimensional integrals and is computed using the Gegen-
bauer polynomial expansion technique [7]. In the construction, we explicitly restore the O(4)-
symmetry of the QED kernel. This allows us to write, according to the Lorentz-covariance structure:

0hlbl` = lim
|H |max→∞

0hlbl` ( |H |max) , 0hlbl` ( |H |max) ≡
∫ |H |max

0
3 |H | 5 ( |H |) , (4)

2
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Figure 1: The 5 different contraction topologies appearing in the computation of the 4-point function
Π̃ on the lattice. The quark propagators represented by solid red lines are computed on an ensemble of
non-perturbative SU(3)-gauge fields.

where the G- and I-integrals are computed within 5 ( |H |) (as discrete sums within a lattice compu-
tation). The quantity 5 ( |H |) will be referred to as the integrand. In practice, our strategy is to first
compute 5 ( |H |) on a given set of values for |H | and then do the last |H |-integral using the trapezoidal
rule.

Due to current conservation, one is free to modify the QED kernel by subtracting a quantity
that leads to a surface term vanishing in the infinite-volume limit [8]. Such a subtraction changes
the shape of the 1-dimensional integrand but not 0hlbl` . In Ref. [6], we have proposed a family of
subtracted kernels parametrized with a positive real number Λ. We can adjust Λ in a way that
5 ( |H |) goes to zero fast enough in the large-|H | region for a quicker convergence of the integrated
0hlbl` without being too peaked at short-distances to avoid large discretization effects. Our default
value for Λ is 0.4.

The evaluation of the hadronic 4-point function Π̃ requires 5 different Wick-contraction topolo-
gies: the fully-connected, the (2+2), the (3+1), the (2+1+1) and the (1+1+1+1) (from left to right
on Fig. 1). Note that the topologies involving self-contracted quark loops do not contribute in the
limit of degenerate quark masses in # 5 = 3. Based on this, we expect that the first two of the above
topologies dominate. Henceforth, we will refer to the fully-connected and the (2+2) topologies as
leading topologies whereas the remaining contributions are referred to as sub-leading topologies.

In each topology, there are a certain number of quark-contraction diagrams to be computed. As
has already been noticed in our calculation with SU(3) 5 -symmetry ensembles [9], one can exploit
translational-invariance of Π̃ to re-parametrize the integral representation of 0hlbl` such that only a
subset of computationally-cheap diagrams needs to be calculated upon a modification of the kernel
function. See Ref. [5] for the exact expressions used for each topology.

3. Numerical setup

For our lattice simulation, we use fifteen # 5 = 2 + 1 ensembles generated by the Coordinated
Lattice Simulations (CLS) consortium [10] with five different lattice spacings and the lowest pion
mass down to about 200 MeV (see Fig. 2).

Our propagator inversions are done with point-sources. To reduce the variance, we use the fact
that, in infinite-volume, 5 ( |H |) is a scalar quantity under O(4)-transformations. Therefore all vectors
H which have the same norm should contribute equally to 5 ( |H |) in the limit of infinite statistics
and in infinite-volume, and we can legitimately average the values for the integrand obtained with
equivalent H-vectors under different choices of the origin.

A good determination of the (2+2)-disconnected contribution is crucial because it is known
that it is of the same magnitude as the fully-connected contribution but of opposite sign [11]. On

3
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Figure 2: Overview of the ensembles used in this study. The symbols have b<c!c sides and darker colors
correspond to large values of <c!. The cross indicates the physical point.

top of the self-averaging strategy, we also rely on truncated solver techniques [12, 13] to reduce
statistical fluctuations.

The subleading topologies, containing disconnected loops of type Tr[W`((G, G)], where (
denotes the propagator, are expected to be small according to large-#2 arguments and is partially
supported by the findings of RBC/UKQCD collobaration [4]. In our work, we compute these
loops based on the proposal of Ref. [14], which is a Wilson-fermion version of the One-End Trick
commonly applied to the twisted-mass formulation, see e.g. Ref. [15]. Due to the electric charge
factors, we always consider the difference between the light and strange disconnected loop in our
computation when it comes to the subleading topologies. Finally, for the (2+1+1), we precompute
and store the lattice-wide object Tr[W`((G, 0)Wa((0, G)] for different choices of the origin in order
to perform self-averaging more efficiently for noise reduction.

4. Results and analysis

In this talk, we only report the results for the purely light-quark part of the leading topologies
(combining the fully-connected and the (2+2)-diagrams) and the (3+1) with light quark triangle,
denoted by (3 + 1)light. The rest of the results can be found in the original paper [5].

4.1 The purely light-quark part of the leading topologies

On the left panel of Fig. 3, the fully-connected contributions to the partially integrated 0hlbl`

are shown for four ensembles at the same lattice spacing but different pion masses and <c!. As
the quality of the data in the large-|H | region deteriorates, we apply a procedure to reconstruct the
integrand in this region: we notice that our data can be well described by a simple exponential
ansatz inspired by the c0-pole contribution, which is the numerically dominant contribution to
0hlbl` . Considering theoretical arguments from Partially Quenched Chiral Perturbation Theory
(PQChPT) [5] and our experience with the previous study at the SU(3) 5 -symmetry point [9],
expectations are that the c0-pole contributes in comparable size but opposite sign to the fully-
connected and the (2+2). Therefore, we should expect a sizeable cancellation between the two.
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As we can see from the right panel of Fig. 3, the combined fully-connected-(2+2) data points
show a very flat pion-mass dependence — in contrast to the strong pion-mass dependence of the
fully-connected contribution alone (left panel of Fig. 3) — which can in fact be well described by
a simultaneous chiral, continuum and infinite-volume fit ansatz linear in <2

c and in 02, with an
exponentially suppressed term in <c!/2.

0 5 10 15 20 25 30

|y|
Max.

/a

0

20

40

60

80

100

120

140

160

a µ(C
o
n
n
) ( 

|y
| M

ax
./a

 )
 x

 1
0

1
1

m
π
 = 221 MeV

m
π
 = 280 MeV

m
π
 = 356 MeV

m
π
 = 415 MeV

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

m
π

2
 [ GeV

2
 ]

0

10

20

30

40

50

60

70

80

90

100

110

120

130

a
µ(C

o
n
n
 +

 2
+

2
)  x

 1
0

1
1

Cont. & Inf. Vol.
β = 3.70

β = 3.55

β = 3.46

β = 3.40

β = 3.34

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

m
π

2
 [ GeV

2
 ]

0

10

20

30

40

50

60

70

80

90

100

110

120

130

a
µ(C

o
n
n
 +

 2
+

2
)  x

 1
0

1
1

m
π
L = ∞

m
π
L = 5.818

m
π
L = 4.642

m
π
L = 3.917

Figure 3: Left: Tail reconstruction for the partially integrated 0hlbl` of the fully-connected contribution with
V = 3.4 (02 = 0.1915 GeV−2) ensembles. Right: Global fit in<2

c and in 02, with an exponentially suppressed
term in<c!/2. The red curves are for fixed 0 with V = 3.4 at fixed<c! and the black one is the extrapolated
result to the infinite-volume and continuum limit.

As for the systematic error of the extrapolation to the physical point, we identify several sources:
the first is the lattice-spacing dependence of the ansatz that we use. On the left panel of Fig. 4, fit
results are displayed with ansätze linear in 0 or in 02 performed at different cut datasets. The fits
performed on the complete dataset give equally good j2/d.o.f for both ansätze even though they
differ by about 1f. Therefore, we decide to quote the result of the average of them for the purely
light-quark leading-order contribution to 0hlbl` . A systematic error estimated from the root-mean-
square deviation of the fits performed on different cut datasets as indicated on the left panel of Fig. 4
is assigned to our continuum extrapolation.

The second identified source of systematic error is due to the chiral extrapolation. In fact, a
curvature term in <2

c is necessary if one extrapolates separately the fully-connected and the (2+2)
to the physical pion mass. Several different curvature terms have been tried out and it is hard to
tell if any one of them is superior to the others. Once combined to get the full leading-topology
contribution, we see that all these different fits give very consistent results compared to our fit with
the combined data, which allows for confidence in the validity of our procedure (right panel of
Fig. 4). A reason why we are not really able to determine the curvature in <2

c is the larger error of
our small-pion mass ensemble data.1 From the left panel of Fig. 4, we see that when we exclude
our heavier pion-mass ensembles, the errors of the fits grow significantly. To address the systematic
error related to this, we perform another fit in replacing the linear<2

c dependence in the fit ansatz by
log(<2

c). This choice is inspired by the dominant light pseudoscalar meson prediction, namely the

1These ensembles are also, by far, our most computationally-expensive ensembles to generate data for.
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c0-pole (with a transition form factor (TFF) parametrized by the Vector-Meson-Dominance model)
and the c±-loop contributions. Among other fit ansatze that we have tried for the individual fits,
such a term is the most divergent but still able to capture the chiral behavior for <c ranging from
its physical value to 420 MeV, which corresponds to our heaviest pion mass used in this study. We
quote half the difference between this alternative fit result and our original one for the systematic
error for our chiral extrapolation.
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Figure 4: Left: 0 v.s. in 02, with different cuts in the data. Right: Combined v.s. summed separate fit
results.

4.2 The (3 + 1)light topology

Among all the sub-leading topologies, we expect the (3+1) diagrams with a light quark “tri-
angle", i.e. terms containing a factor of type Tr[W`((0, 1)Wa((1, 2)W_((2, 0)], to be the dominant
ones. From PQChPT, these diagrams receive a contribution proportional to the difference between
the c±- and the  ±-loops but none from the pseudoscalar meson-pole contribution at leading order.
On all of our ensembles that are away from the SU(3) 5 -symmetric point, the (3+1)light contribution
turns out to be consistent with zero within error but the signal is quite rapidly lost when we go
to larger |H |. Therefore, we come up with a treatment of the noisy tail of our data based on the
prediction of the light-meson contribution. The procedure goes as follows, with a parameter Fsys.:

1. Compute the residual contribution from the pseudoscalar-meson loop X0PS
` from |H | = |H |cut

to |H | = ∞.
2. Estimate the systematic error of the truncation as Fsys. × X0PS

` .
3. The central value is taken from the lattice data and the total error is the statistical and the

systematic ones added in quadrature.
4. Choose |H |cut by minimizing the total error.

A typical outcome of this tail-truncation procedure is given in Fig. 5. In this example, the total error
is minimized at around |H | = 1.5 fm and at this point, the total error is dominated by the statistical
one.

6
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The processed data points are shown on the left panel of Fig. 6, with Fsys. = 100%. The data
points are all consistent with zero but get noisier as the pion mass decreases. As there is no clear
diverging trend in <2

c , we chose the simplest ansatz 0 (3+1)light` = �(<2
 
−<2

c), which has an built-in
constraint that this contribution vanishes at the SU(3) 5 -symmetric point, without over-fitting the
data with more complicated ansätze. To understand possible systematic errors related to our tail
truncation procedure and our fitting, we repeat the same study with a couple of different values for
Fsys. ranging between 100% and 200% and perform the fit to different cut datasets (right panel of
Fig. 6). We obtain very good consistency between all these different choices. For the final result,
we quote the one from a conservative Fsys. = 120% with the coarsest lattice spacing left out.
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Figure 5: Example of the truncation procedure for the (3+1) with C101.
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5. Summary and outlook

In this talk, our lattice QCD determination of 0hlbl` based on a position-space method obtained
in Ref. [5] is presented. Accounting for all Wick-contraction topologies, we got a value of 0hlbl` =

106.8(15.9)×10−11, with a break-down in each topology given in Tab. 1. The precision requirement
for resolving the present tension on 0` between theory and experiment is achieved (see Fig. 7 for
a comparison with other estimates). We provide evidence for the irrelevance of the contribution
of the sub-leading topologies at the 10%-level precision for the total 0hlbl` that we aim at. The
ambiguity between the O(0) and O(02) discretization effects in the purely light-quark contribution
from the leading topology makes us take a more conservative root-mean-squared approach for the
systematic error estimation, which turns out to cover the spread of different cut datasets. In addition,
we addressed the systematic error due to the chiral extrapolation, where our data are not accurate
enough to allow for distinguishing the precise pion-mass dependence.

An improvement of this determination based on increasing the statistics on the lighter pion-
mass ensembles would be computationally-daunting. Alternatively, one can also first subtract the
most chirally dominant contributions from each data point at its respective pion mass, perform
a global fit on the subtracted data, and finally add the subtracted contribution evaluated at the
physical pion mass back to get the final estimate. Fig. 8 is an example of such a procedure, where
the subtracted contribution is the c0-pole contribution with TFF obtained from a dedicated lattice
study [16]. In comparison to our original treatment, a flatter pion-mass dependence is apparent and
the result obtained from this alternative approach is entirely compatible with our original result.

25 50 75 100 125 150 175

aµ
Hlbl

 x 10
11

PdRV 2009

N/NJ 2009

J 2017

WP 2020

RBC 2019

This Work

Figure 7: Comparison to the existing estimates. The circle ones are from lattice QCD and the square ones
are phenomenological. See Ref. [5] for references.
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