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Complex Langevin: Boundary terms at poles of the drift
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The complex Langevin method is a general method to treat systems with complex action, such as
QCD at nonzero density. The formal justification relies on the absence of certain boundary terms,
both at infinity and at the unavoidable poles of the drift force. Here I focus on the boundary terms
at these poles for simple models, which so far have not been discussed in detail. The main result
is that those boundary terms (for the “un-evolved” observables) arise after running the Langevin
process for a finite time and vanish again as the Langevin time goes to infinity. This is in contrast
to the boundary terms at infinity, which can be found to occur in the long time limit (cf. the
contribution by Dénes Sexty).
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Complex Langevin: Boundary terms at poles of the drift Erhard Seiler

1. Introduction

This contribution is based largely on [1], to which we refer for more details.
To be able use stochastic sampling methods for a complex holomorphic density 𝜌 ∝ 𝑒−𝑆 on

R𝑑 , one searches for a probability density 𝑃 ≥ 0 on C𝑑 , s.t.

⟨O⟩ ≡
∫
R𝑑

O(𝑥)𝜌(𝑥)𝑑𝑥 =
∫
C𝑑

O(𝑥 + 𝑖𝑦)𝑃(𝑥, 𝑦)𝑑𝑥𝑑𝑦 . (1)

for holomorphic observables O.
Klauder [2] and Parisi [3] proposed a general, very flexible method to produce such a 𝑃, as the

equilibrium distribution of real stochastic process on C𝑑 , called Complex Langevin (CL) method,
by defining

𝑑𝑧 = 𝐾𝑑𝑡 + 𝑑𝑤, 𝐾 = −∇𝑆 (2)

(𝑑𝑤 is the real Wiener increment normalized as ⟨𝑑𝑤2⟩ = 2). This process necessarily wanders into
the complex realm C𝑑 . Written out (2) becomes

𝑑𝑥 = 𝐾𝑥𝑑𝑡 + 𝑑𝑤, 𝐾𝑥 = Re𝐾 (3)

𝑑𝑦 = 𝐾𝑦𝑑𝑡, 𝐾𝑦 = Im𝐾 (4)

The hope is then that the long time average of this process yields the 𝜌-expectation. A strategy to
justify this was proposed in [4]. Briefly it proceeds as follows: we want for a sufficiently large class
of observables O

⟨O⟩𝜌(𝑡) = ⟨O⟩𝑃 (𝑡) ∀ 𝑡 ≥ 0 , (5)

where 𝑃(𝑡) ≡ 𝑃(𝑥, 𝑦; 𝑡) is the probability density of the CL stochastic process and 𝜌(𝑡) ≡ 𝜌(𝑥; 𝑡) is
the evolved complex density solving the “complex Fokker-Planck equation”

𝜕

𝜕𝑡
𝜌(𝑧; 𝑡) = 𝐿𝑇𝑐 𝜌(𝑧; 𝑡) , 𝐿𝑇𝑐 = 𝜕𝑧 (𝜕𝑧 − 𝐾 (𝑧)) . (6)

with initial conditions such that (5) holds at 𝑡 = 0. 𝐿𝑇𝑐 is the transpose of 𝐿𝑐, governing the evolution
of observables:

𝜕

𝜕𝑡
O(𝑧; 𝑡) = 𝐿𝑐O(𝑧; 𝑡) , 𝐿𝑐 = (𝜕𝑧 + 𝐾 (𝑧))𝜕𝑧 . (7)

It is easy to see that ∫
𝑑𝑥𝜌(𝑥; 𝑡)O(𝑥; 0) =

∫
𝑑𝑥𝜌(𝑥; 0)O(𝑥; 𝑡) (8)

provided the integration connects two zeroes (finite or infinite) of 𝜌. Eq.(5) is then true if the
function

𝐹O (𝑡, 𝜏) ≡
∫

𝑃(𝑥, 𝑦; 𝑡 − 𝜏)O(𝑥 + 𝑖𝑦; 𝜏)𝑑𝑥 𝑑𝑦 (0 ≤ 𝜏 ≤ 𝑡) (9)

is independent of 𝜏, i.e.
𝜕

𝜕𝜏
𝐹O (𝑡, 𝜏) = 0 ∀𝑡 ≥ 0 . (10)

Here O(𝑧; 𝜏) is the solution of the initial value problem

𝜕

𝜕𝜏
O(𝑧; 𝜏) = 𝐿𝑐O(𝑧; 𝜏) , O(𝑧; 0) = O(𝑧) ; 𝐿𝑐 = (𝜕𝑧 + 𝐾 (𝑧))𝜕𝑧 , (11)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
1
0

Complex Langevin: Boundary terms at poles of the drift Erhard Seiler

(5) follows from (10) because 𝐹O (𝑡, 𝜏) interpolates between two sides of (5), as shown in [4]
(assuming integration by parts in 𝑥 without boundary terms). Integration by parts in 𝑥, 𝑦 shows that
(10) holds, up to possible boundary terms, in other words 𝜕

𝜕𝜏
𝐹 (𝑡, 𝜏) is a (sum of) boundary terms.

Boundary terms may arise at infinity as well as at poles.
An important caveat that was stated in [4] is the following: (5) implies correctness of CL only

if
lim
𝑡→∞

⟨O⟩𝜌(𝑡) (12)

exists and is unique. i. e. if the spectrum of 𝐿𝑇𝑐 lies in the left half of C and 0 is a simple eigenvalue
with eigenfunction 𝜌(𝑥) (see the remark at the end of Section 3).

Possible failure of the CL method was analyzed from a different point of view by Salcedo [5];
the problem caused by poles of the drift was studied by Nishimura and Shimasaki in simple models
[6]; in [7] we presented a detailed study of this issue, with the emphasis on numerical analysis of
various models, from the simplest one-dimensional case to full QCD. Here we trace the problem to
the occurrence of boundary terms.

2. The need to consider the evolution before reaching equilibrium

In [8, 9] we found boundary terms at infinity by considering the equilibrium distributions and
“un-evolved” observables, i. e. 𝜕𝜏𝐹 (𝑡, 𝜏) |𝜏=0 (cf. D. Sexty, these proceedings).

But this type of boundary term does not appear at poles. This is because empirically the
equilibrium distribution 𝑃(𝑥, 𝑦; 𝑡 = ∞) vanishes at least linearly at the poles of the drift, so
holomorphic observables could not lead to boundary terms there. (Note that this argument does
not hold for “evolved” observables, which are at best meromorphic.)

To see this in a little more detail, let’s consider for simplicity a pole at the origin; consider the
approximate boundary term∫

𝑥2+𝑦2≤𝛿2
𝑑𝑥 𝑑𝑦𝑃(𝑥, 𝑦; 𝑡 = ∞)𝐿𝑐O(𝑥 + 𝑖𝑦) . (13)

Using the Cauchy-Riemann equations and integrating by parts (13) becomes∫
𝑥2+𝑦2≤𝛿2

𝑑𝑥 𝑑𝑦O(𝑥 + 𝑖𝑦) (𝐿𝑇𝑃) (𝑥, 𝑦; 𝑡 = ∞) + 𝐵𝛿 = 𝐵𝛿 (14)

where 𝐿𝑇 is the real Fokker-Planck operator

𝐿𝑇 = 𝜕2
𝑥 − 𝜕𝑥𝐾𝑥 − 𝜕𝑦𝐾𝑦 (15)

describing the evolution of 𝑃 under the stochastic process, see [4]). (14) holds since the first term
of the left-hand side vanishes in equilibrium. 𝐵𝛿 is a boundary term. Now, since O is holomorphic,
𝐿𝑐O has at most a simple pole at the origin, stemming from the pole in the drift. Since 𝑃 vanishes
linearly at the origin, the integrand of (13) is bounded in the region of integration, hence the
boundary term vanishes for 𝛿 → 0.

If instead we consider the time evolution for finite time 𝑡, 𝐵𝛿 now is given by

𝐵𝛿 =

∫
𝑥2+𝑦2≤𝛿2

𝑑𝑥 𝑑𝑦
{
O(𝑥 + 𝑖𝑦)𝐿𝑇𝑃𝑧0 (𝑥, 𝑦; 𝑡) − 𝑃𝑧0 (𝑥, 𝑦; 𝑡)𝐿𝑐O(𝑥 + 𝑖𝑦)

}
(16)
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and the first term of this expression is no longer zero. Since the equilibrium distribution does not
lead to a boundary term, we now consider the evolution for short times.

3. One-pole model

The one-pole model is defined by

𝜌(𝑥) = (𝑥 − 𝑧𝑝)𝑛𝑝 exp(−𝛽𝑥2) (17)

with 𝑛𝑝 a positive integer.
Since we are not interested in large times, we can simplify the model even further by putting

𝛽 = 0, giving rise to the “pure pole model”; without loss we also set 𝑧𝑝 = 0. For the special case
𝑛𝑝 = 2 there is an explicit formula for the integral kernel of exp(𝑡𝐿𝑐):

exp(𝑡𝐿𝑐) (𝑧, 𝑧′) =
𝑧′

𝑧
√

4𝜋𝑡
exp

(
(𝑧 − 𝑧′)2

4𝑡

)
, (18)

where 𝑧′ = 𝑥 ′ + 𝑖𝑦0 and the integration is over 𝑥 ′. As observables we take the powers

O𝑘 (𝑧) ≡ 𝑧𝑘 , 𝑘 = −1, 0, 1, 2 . . . . (19)

Using (18) we can explicitly compute the evolution of those observables, obtaining e. g.

O−1(𝑧; 𝑡) =
1
𝑧
.

O1(𝑧; 𝑡) = 𝑧 +
2𝑡
𝑧
,

O2(𝑧; 𝑡) = 𝑧2 + 6𝑡 ,

O3(𝑧; 𝑡) = 𝑧3 + 12𝑡𝑧 + 12𝑡2

𝑧
,

O4(𝑧; 𝑡) = 𝑧4 + 20𝑡𝑧2 + 60𝑡2 , (20)

The fact that no higher negative powers occur for 𝑛𝑝 = was already noted in [7]. We compared
these results with those of the CL evolution ⟨O𝑘⟩𝑃 (𝑡) obtained by running 105 CL trajectories, all
with the same starting point 𝑧 = 𝑧0 up to the desired time 𝑡. The comparison is shown in Fig. 1 for
𝑘 = −1 and 𝑘 = 4.

As in these examples, generally for even powers there is agreement, whereas for odd powers
already at small times there is disagreement, signaling the presence of boundary terms for these
powers.

As long as 𝑛𝑝 = 2 we also have a closed expression for the integral kernel exp(𝑡𝐿𝑐) for
𝛽 > 0 , 𝑧𝑝 = 0 , 𝑛𝑝 = 2:

exp(𝑡𝐿𝑐) (𝑧, 𝑧′) =
𝑧′

𝑧
exp

(
𝛽

2
(𝑧2 − 𝑧′2)

)
exp(2𝛽𝑡)

×
√︄

𝛽

𝜋(1 − 𝑒−4𝛽𝑡 )
exp

[
− 𝛽(𝑧

2 + 𝑧′2)
2 tanh(2𝛽𝑡)

]
exp

(
𝛽𝑧𝑧′

sinh(2𝛽𝑡)

)
(21)
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Figure 1: Pure pole model. Comparison of two evolutions for 𝑘 = −1 (left) and 𝑘 = 4 (right). Dashed lines:
connecting CL results, solid lines: analytic 𝜌 evolution (20).

(based on Mehler’s formula [10]). Here again 𝑧′ = 𝑥 ′ + 𝑦0, 𝑥 ′ being the integration variable.
Defining

𝑏 ≡ 𝛽

sinh(2𝛽𝑡) ; 𝜎 ≡ 1 − exp(−4𝛽𝑡)
2𝛽

, (22)

we find for the same observables as above

O2(𝑧; 𝑡) = 3𝜎 + 𝑏2𝜎2𝑧2 → 3
2𝛽

(𝑡 → ∞)

O4(𝑧; 𝑡) = 15𝜎2 + 10𝑏2𝜎3𝑧2 + 𝑏4𝜎4𝑧4 → 15
4𝛽2 (𝑡 → ∞)

O1(𝑧; 𝑡) =
1
𝑏𝑧

+ 𝑏𝜎 → ∞ (𝑡 → ∞)

O3(𝑧; 𝑡) =
3𝜎
𝑏𝑧

+ 6𝑏𝜎2𝑧 + 𝑏3𝜎3𝑧3 → ∞ (𝑡 → ∞)

O−1(𝑧; 𝑡) =
1
𝑏𝜎𝑧

→ ∞ (𝑡 → ∞) (23)

Even powers remain bounded for 𝑡 → ∞ and actually converge to the correct limit, whereas odd
powers grow exponentially!

This signals the presence of an exponentially growing mode in both exp(𝑡𝐿𝑐) and its transpose
exp(𝑡𝐿𝑇𝑐 ), so in this case ⟨O⟩𝜌(𝑡) is not the correct evolution. This failure of correctness is again due
to the existence of boundary terms: absence of boundary terms also implies absence of exponentially
growing modes as will be demonstrated elsewhere [11].
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4. Direct numerical evaluation of the boundary term

We now consider 𝛽 > 0, 𝑧𝑃 ≠ 0. In this case we do not have an analytic expression for the
integral kernel of exp(𝑝𝑡𝐿𝑐), but we can numerically evaluate the approximate boundary term 𝐵𝛿

(16).
After some easy manipulations we find for any holomorphic observable O(𝑧)

𝐵𝛿 = −
∮
|𝑧−𝑧𝑝 |=𝛿

®𝐾 · ®𝑛 𝑃𝑧0 (𝑥, 𝑦; 𝑡)O(𝑥 + 𝑖𝑦)𝑑𝑠 + 𝑜(𝛿) = −
∮
|𝑧−𝑧𝑝 |=𝛿

®𝐾 · ®𝑛𝑃𝑧0 (𝑥, 𝑦; 𝑡)O(0)𝑑𝑠 + 𝑜(𝛿) ,

(24)
We approximate the circle of radius 𝛿 in (24) by a thin ring of thickness [𝛿:

(1 − [)𝛿 < |𝑧 − 𝑧𝑝 | < (1 + [)𝛿 . (25)

For 𝑛𝑝 = 2, 𝛽 = 1, 𝑧𝑝 = −𝑖/2, 𝑧0 = 𝑖/2 and O(0) = 1 the CL process gives the results shown in
Fig. 2.

Figure 2: Full pole model. Numerical estimates of the boundary term 𝐵𝛿 for [ = 0.1 . Left: 𝐵𝛿 vs. 𝛿, right:
𝐵𝛿 vs. 𝑡.

The CL data are produced as before by running trajectories up to the respective times 𝑡. Because
the chance of hitting the small rings is so small, we took here 107 trajectories, but we still obtained
only about 50 hits for 𝛿 = 0.01, [ = 0.1 and 𝑡 = 0.24 and 0.25, and even fewer for other values of 𝑡.
Therefore the extrapolation to 𝛿 = 0 can only be to be done “by eye”. But Fig. 2 still shows clearly
that for 𝑡 < 0.22 there is no boundary term. This is because the process takes at least that much
time to move from the starting point to the location of the pole. (Because there is no noise in the 𝑦
direction one can compute this time by evaluating a simple integral.)

For 0.23 < 𝑡 ≤ 0.25 there are clear indications of a boundary term, whereas for 𝑡 > 0.5 it
is fading away, and it has disappeared for 𝑡 = 1250, where we get much smaller statistical errors
because we can thermalize and average over initial conditions.
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But it should be stressed that we were considering 𝜕𝜏𝐹 (𝑡, 𝜏) only for 𝜏 = 0. It is to be expected
that for 𝑡 > 0.5 the boundary term reappears at nonzero values of 𝜏.

I would like to thank all the people with whom I had the pleasure of collaborating on the
CL method: Gert Aarts, Felipe Attanasio, Lorenzo Bongiovanni, Pietro Giudice, Benjamin Jäger,
Frank James, Jan Pawlowski, Lorenzo Luis Salcedo, Manuel Scherzer, Dénes Sexty, Ion-Olimpiu
Stamatescu, Jacek Wosiek.
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