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We present the necessity of counter-terms for Quantum Finite Element (QFE) simulations of q4

theory on non-trivial simplicial manifolds with semi-regular lattice spacing. By computing the
local cut-off dependence of UV divergent diagrams we found that the symmetries of the continuum
theory are restored for q4 theory on the manifolds (2 and (2 × R in the weak coupling regime
[1, 2]. Here we consider the construction of non-perturbative local counter-terms in an attempt to
approach the strong coupling Wilson-Fisher IR fixed point.
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1. Introduction

In 2012, Brower, Fleming and Neuberger [3, 4] explored lattice radial quantization of the 3 = 3
Ising spin model on a cylindrical geometry whose cross-section was a discretized icosahedron.
They observed critical scaling but the computed critical exponents did not agree with the results of
the continuum 3 = 3 Ising conformal field theory (CFT). The conclusion was that the inability of
the discretization scheme based on Ising spins to recover full rotational invariance in the continuum
limit prevented the recovery of full conformal invariance as well, leading to the discrepancy.

In subsequent work [1, 2, 5], Brower, Fleming and collaborators replaced the discretized
icosehedron with a discretized 2-sphere (2 and replaced the Ising spins with a real scalar field q.
The critical q4 theory is known to be in the same universality class as the Ising model in 3 = 2, 3. In
this framework, a discretized classical action for q4 theory on (2 can be constructed using the Finite
Element Method (FEM) and was shown to converge to the continuum classical action, including full
rotational invariance, as the lattice spacing goes to zero [6]. Unfortunately, recovering continuum
symmetries of the classical action was insufficient for the recovery of full conformal invariance of
the quantum critical theory. This is clearly demonstrated in Figure 1 where an attempt to locate
the critical surface using the 4th-order Binder cumulant *4 fails and the spherical plot on the right
reveals the reason: The non-uniform discretization of the sphere leads to position-dependent lattice
artifacts that must be renormalized in the interacting theory.

In the Quantum Finite Element (QFE) framework, it was conjectured for sufficiently small bare
coupling that a position-dependent counterterm computed in bare lattice perturbation theory and
added to the classical action would suffice to restore the full conformal invariance of the critical
theory in the continuum limit [7, 8]. This conjecture has been demonstrated numerically for critical
q4 theory on (2 [2] and R×(2 [1]. Despite the apparent success of this approach, it remains unclear
why it works at all. The bare lattice coupling _0 is related to the dimensionful coupling of the
continuum theory _cont via _0 = 0_cont as 0 → 0 so that any finite bare lattice coupling corresponds
to infinite coupling in the continuum theory. In [1], critical behavior was observed even in a region
where _0 was small, but _cont was clearly in the non-perturbative regime. It is not known why
continuum-like perturbative counter-terms work in a regime where continuum perturbation theory
obviously fails.

Here, we study q4 theory on a discretized (2 lattice and seek to modify the perturbative counter-
terms in a manifestly non-perturbative way. We present a simple method of tuning the counter-terms
so that critical behavior is observered in the non-perturbative region, but we find evidence that this
method is not sufficient to restore full rotational symmetry in the continuum limit.

2. Background

The discretized q4 action used in our simulations is

( =
1
2

∑
〈GH〉

+GH

ℓ2
GH

(
qG − qH

)2 +
∑
G

√
6G

(
1
2
<2q2

G + _0q
4
G

)
where the site- and link-dependent coefficients are geometrical factors determined using the finite
element method as described in detail in [2]. We discretize (2 using a refined icosahedron as shown
in Figure 2. The continuum limit is approached by increasing the refinement !.
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Figure 1: On the left, the fourth-order Binder cumulant does not show critical scaling to the known continuum
result as the UV cutoff ∝ 1/! → 0 for the unrenormalized action. On the right, a spherical plot of the local
deviation of the magnetization q2 (G) from the average over the sphere q2 in the pseudocritical region showing
a mixed phase structure with clear icosahedral symmetry. Reprinted from [2].

Figure 2: Refined icosahedron used to discretize (2, shown for a refinement of ! = 3. Each edge of the
icosahedron is subdivided into ! segments of equal length, which are then used to form a uniform triangular
lattice on each face. The resulting points are then projected onto a unit sphere.

As mentioned in the introduction, this model does not appear to have a stable critical surface
in the continuum limit. A second issue, likely related to the first issue, is that spherical symmetry
is not restored in the continuum limit.

3. Weak Coupling Regime

At weak coupling, the theory can be renormalized to remove UV divergent behavior by adding
perturbative mass counter-terms to the action. In 3 = 2, the 1-loop diagram is logarithmically
UV divergent and all higher order diagrams are finite. Performing the perturbative expansion in
_0, renormalization requires the addition of local mass counter-terms. To first order in the bare
coupling, and after subtracting off a position-independent logarithmically divergent piece, the mass
counter-terms have the form

X<2
G = 6&_0 log

(√
6G

)
(1)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
1
5

Quantum Counter-Terms for Lattice Field Theory on Curved Manifolds Evan K. Owen

Figure 3: At _0 = 10 with perturbative counter-terms, the Binder cumulant *4 does not approach the
continuum value*∗4 ' 0.851 . . . as the lattice spacing is taken to zero. Here and in Figure 1, `2

0 is related to
the bare mass by <2 = −2`2

0. Reprinted from [10].

where & =
√

3/8c and √6G is the normalized area associated with site G. The new lattice action is

( → ( +
∑
G

√
6GX<

2
Gq

2
G (2)

As noted in the introduction, it has been shown numerically that this renormalization effectively
stabilizes the critical surface and restores spherical symmetry in the perturbative regime (_0 ≤ 1)
[2].

For larger values of _0 however, we find that this renormalization does not stabilize the critical
surface. Specifically, we expect the 4th order Binder cumulant *4 to approach its exact continuum
value*∗4 ' 0.851 . . . [2, 9] in the continuum limit, where*4 is defined as

*4 =
3
2

(
1 − 〈<

4〉
3〈<2〉2

)
(3)

and < is the magnetization
< =

∑
G

√
6GqG (4)

At _0 = 10 we find that an obstruction begins to appear at a refinement of ! = 64 that causes*4 to
drop to zero at fixed bare mass. This behavior is shown in Figure 3.

4. Strong Coupling Regime

We conjecture that it may be possible to stabilize the critical surface at strong coupling by
modifying the perturbative counter-terms in a manifestly non-perturbative way. As a first attempt,
we simply multiply X<2 from the perturbative expansion by a tunable coefficient � (_0), i.e.

X<2 → � (_0)X<2 (5)
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Figure 4: Measurement of the operator 〈q2
G〉 at different positions on the discretized (2 lattice with a bare

coupling of _0 = 10 and a refinement of ! = 96. Smaller values of √6G are points near the icosahedral
vertices, and larger values are near the centers of the icosahedral faces. The data becomes approximately
uniform across the sphere when the coefficient � (_0 = 10) is tuned to about 0.5.

To see the effect of this change, we measure q2
G at different sites around the sphere, parametrized

by the normalized area associated with each site √6G . Spherical symmetry requires local operators
like q2

G to be uniform on the sphere, so any non-uniformity of this measurement gives an explicit
indication of spherical symmetry breaking. In Figure 4, we show results for three different choices
of � (_0). The measurement is clearly non-uniform in the case without counter-terms as well as the
case with unmodified perturbative counter-terms. For the intermediate case, we have found that it
is possible to tune the coefficient so that the measurement is approximately uniform everywhere on
the sphere.

Because we are only tuning one parameter, there is still some residual position-dependence
in the measurement that can be seen as a slight curvature of the data. We therefore expect that
this simple approach will not be sufficient to ensure a full restoration of spherical symmetry in the
continuum limit. Despite this, we again attempt to approach the continuum limit with our tuned
coefficient, keeping the coefficient fixed as the refinement increases. As shown in Figure 5, we can
now identify a critical mass for which the Binder cumulant remains constant as the lattice spacing
goes to zero. In addition, the Binder cumulant seems to be approaching the correct continuum
value.

We repeated this process at several different values of _0 to see if this parametrization of the
counter-terms is effective at even stronger coupling. We note that the tuning was performed “by
eye” using plots similar to Figure 4, rather than by using a numerical method. Determining a more
precise tuning method is the subject of future work. We find that the tuned values approximately
follow the form

� (_0) = 4−&_0 (6)

where & =
√

3/8c is the same geometric factor from the perturbative counterterm. With this
modification, the counter-terms become

X<2
G (_0) = 6&_04

−&_0 log
(√
6G

)
(7)

This behavior, shown in Figure 6, has a maximum around _0 ' 14.5. This implies that the
counter-terms have the largest effect at this coupling, which potentially implies a faster approach
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Figure 5: After tuning the perturbative counter-terms to make the operator 〈q2
G〉 approximately uniform on

the sphere, a mass can be found such that the Binder cumulant*4 remains constant with increasing refinement
and appears to approach the correct continuum value*∗4 ' 0.851 . . .

Figure 6: Conjectured form of the mass counter-term obtained by tuning the perturbative counter-term so
that the operator 〈q2

G〉 is approximately uniform on the sphere.

to the continuum limit as the lattice spacing decreases. We are therefore tempted to guess that this
value of the bare coupling might correspond to the Wilson-Fisher fixed point, though we have no
additional evidence to prove this conjecture at this time.

The form for the counter-terms at strong coupling in equation 7, though pleasing in its simplicity,
seems to be insufficient to ensure a stable critical surface at all values of _0, as we will now show.
In particular, it may be that the reappearance of the factor & is merely a coincidence. We have
shown that this method greatly improves the stability of the critical surface at _0 = 10. However,
at _0 = 20 we find that the obstruction still exists at a refinement above about ! = 96, as shown in
Figure 7. It could be the case that additional tuning of � (_0) would further improve the results at
stronger coupling, or perhaps additional counter-terms for other terms in the action are required.
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Figure 7: Same as Figure 5 but at _0 = 20, using the counterterm coefficient given in equation 6. The Binder
cumulant does not remain constant for any value of the mass as the lattice spacing is taken to zero.

5. Conclusion

We have presented a method for modifying perturbative counter-terms for q4 theory on a
discretized (2 lattice which reduces residual breaking of spherical symmetry in the strong coupling
regime. We have also shown that the modified counter-terms result in a stable critical surface at
higher refinement when compared to either using perturbative counter-terms without modification
or not using counter-terms at all. We have also found indications that there is a value of the bare
coupling at which the effect of the counter-terms is strongest, possibly indicating that this coupling
corresponds to the Wilson-Fisher fixed point of the theory.

We note that the simple method we used to modify the perturbative counter-terms was only an
improvement. It did not completely restore spherical symmetry, nor did it lead to a well-defined
critical surface at all values of the bare coupling. It is possible that a more complex generalization of
this method could fully restore spherical symmetry and stabilize the critical surface in the continuum
limit. Future work is required to constrain the possible form of such a generalization.
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