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Near the second order phase transition point, QCD with two flavours of massless quarks can be
approximated by an O(4) model, where a symmetry breaking external field 𝐻 can be added to
play the role of quark mass. The Lee-Yang theorem states that the equation of state in this model
has a branch cut along the imaginary 𝐻 axis for |𝐼𝑚 [𝐻] | > 𝐻𝑐, where 𝐻𝑐 indicates a second
order critical point. This point, known as Lee-Yang edge singularity, is of importance to the
thermodynamics of the system. We report here on ongoing work to determine the location of 𝐻𝑐

via complex Langevin simulations.
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1. Introduction

Around the chiral phase transition the matter dynamics of QCD can be well-approximated
by a theory of massless pions and scalar quark condensate. In this low energy regime, nucleons
and heavier hadrons play no role, and the model is described by an 𝑂 (4) scalar field with quartic
self-interactions. In this model, an external source ℎ0 coupled to the quark condensate plays the
role of chemical potential. The breaking of chiral symmetry, signalled by a vacuum expectation
value of the quark condensate, is controlled by the sign and strength of the mass parameter.

The Yang-Lee theorem [1, 2] states that O(𝑁) models have branch cuts for purely imaginary
values of ℎ0, and the cuts end at second order critical points, known as Lee-Yang edge singularities.
These singularities provide an upper bound on the radius of convergence of a Taylor expansion in
ℎ0 around the origin. Analogously, in QCD this would correspond to an expansion in the chemical
potential 𝜇 around the chiral phase transition. Thus, knowing the location of the edge singularity
in the O(𝑁) case provides information on how far in the chemical potential a Taylor expansion in
QCD can be trusted. An earlier investigation on this topic, using random matrix models, can be
found in ref. [3]. Recent works on this topic have been carried out using Taylor expansions [4],
lattice QCD results for non-universal parameters [5], reweighting [6], Functional Renormalisation
Group methods [7], Padé resummations [8], as well as studies in QCD via imaginary chemical
potential [9, 10].

The complex external magnetic field, used to probe the analytic structure of the O(𝑁) model,
makes the action complex, leading to a sign problem (or complex phase problem). In order
to circumvent it, we make use of the complex Langevin (CL) method [11–14], an extension of
stochastic quantisation [15]. This method has been used over the past decades with success
in different contexts, such as ultracold atoms [16, 17], QCD [18–20], and superstring inspired
models [21]. For a recent reviews of applications of complex Langevin, see [22, 23] and references
therein.

2. Computational method

The action describing the O(𝑁) field in 3 spatial dimensions is given by

𝑆 =

∫
𝑑3𝑥

[
1
2
𝜕𝜇𝜑𝑖𝜕𝜇𝜑𝑖 +

𝑚2
0

2
𝜑𝑖𝜑𝑖 +

𝜆0
4!

(𝜑𝑖𝜑𝑖)2 + ℎ0𝜑1

]
, (1)

where 𝑚0 ∈ R is the mass, 𝜆0 ∈ R is quartic coupling, ℎ0 = ℎ𝑅 + 𝑖ℎ𝐼 ∈ C represents the (complex)
external magnetic field, and 1 ≤ 𝑖 ≤ 𝑁 . Due to the presence of ℎ0 the action is complex, and thus
cannot be simulated using standard Monte Carlo methods that rely on importance sampling.

We employ the complex Langevin method to generate field configurations distributed according
to the weight 𝑒−𝑆 . In this method the fields are augmented by a fictitious time dimension 𝜏, known
as Langevin time, over which they evolve according to the Langevin equation

𝑑𝜑𝑖 (𝑥, 𝜏)
𝑑𝜏

= −𝛿𝑆[𝜑𝑖 (𝑥, 𝜏)]
𝛿𝜑𝑖

+ 𝜂𝑖 (𝑥, 𝜏) , (2)

with 𝜂𝑖 (𝑥, 𝜏) being white noise fields

〈𝜂〉 = 0 , 〈𝜂𝑖 (𝑥, 𝜏)𝜂 𝑗 (𝑦, 𝜏′)〉 = 2𝛿𝑖 𝑗 𝛿(𝑥 − 𝑦)𝛿(𝜏 − 𝜏′) , (3)
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and the 〈· · · 〉 represent ensemble averages. Quantum expectation values are computed via simple
averages over the Langevin time, after the system reaches its equilibrium state.

Due to the complexity of the action, all real fields are also given an imaginary part. In this
enlarged manifold where the fields are defined complex Langevin is not guaranteed to converge
to the correct result. Extensive discussions on criteria for correct convergence can be found in
refs. [24–28].

Our numerical simulations use the Euler-Maruyama discretisation for the Langevin equation

𝜑𝑖 (𝑥, 𝜏 + 𝜖) = 𝜑𝑡 (𝑥, 𝜏) − 𝜖
𝛿𝑆[𝜑𝑖 (𝑥, 𝜏)]

𝛿𝜑𝑖

+
√
𝜖 𝜂𝑖 (𝑥, 𝜏) (4)

with the Langevin step size 𝜖 being changed adaptively [29] to avoid runaway trajectories. A study
of implicit schemes to numerical evolve the complex Langevin equation is found in ref. [30].

The Lee-Yang theorem states that the magnetic equation of state in the symmetric phase
exhibits branch cuts that end at the edge singularities. Therefore, we are interested in the average
magnetisation per site

𝑀 =
1
𝑉

𝜕

𝜕ℎ0
ln 𝑍 =

1
𝑉

〈Φ1〉 , Φ1 =

∫
𝑑3𝑥 𝜑1(𝑥) (5)

and its susceptibility

𝜒 =
1
𝑉

𝜕2

𝜕ℎ2
0

ln 𝑍 =
1
𝑉

[〈
Φ2

1
〉
− 〈Φ1〉2] . (6)

The magnetisation should exhibit a discontinuity when ℎ𝑅 goes across the branch cut at ℎ𝑅 = 0 and
|ℎ𝐼 | > ℎ𝑐, whereas the susceptibility should peak (due to finite lattice volume) for |ℎ𝐼 | ≈ ℎ𝑐.

3. Results

Our studies started with a toy model: an one site model with O(2) symmetry. A very similar
case, with a single field instead of two, has been considered in ref. [31]. There, a failure of CL has
been observed.

Afterwards, we have moved to a three dimensional theory. Since in the thermodynamic limit
the Lee-Yang theorem states that branch cuts exist, the analytic structure of the partition function in
this model is qualitatively different from the 0-dimensional case. It is then interesting to see how
complex Langevin fares in this scenario.

3.1 Single site O(2) model

We begin with an analytically solvable one site model at 𝑁 = 2, given by the action

𝑆 =
𝑚2

0
2

(
𝑥2 + 𝑦2

)
+ 𝜆0

4

(
𝑥2 + 𝑦2

)2
− ℎ0𝑥 . (7)

Its partition function and magnetisation are, respectively, given by

𝑍 = 2𝜋
∫ ∞

0
𝑟𝑑𝑟 𝐼0(ℎ0𝑟) exp

[
−
𝑚2

0𝑟
2

2
− 𝜆0𝑟

4

4

]
, (8)
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Figure 1: Real and imaginary parts of the magnetisation of the single site O(2) model as function of ℎ𝑖 . The
continuous lines represent the exact solutions, while the points resulted from complex Langevin simulations.
The divergences correpond to zeros of the partition function, which the complex Langevin fails to capture.

and

𝑀 = 〈𝑥〉 = 𝜕 ln 𝑍

𝜕ℎ0
=

2𝜋
𝑍

∫ ∞

0
𝑟2𝑑𝑟 𝐼1(ℎ0𝑟) exp

[
−
𝑚2

0𝑟
2

2
− 𝜆0𝑟

4

4

]
, (9)

where 𝐼𝑛 (𝑥) are the modified Bessel functions of the first kind.
As it is shown in fig. 1, the complex Langevin simulations fail to capture the position of the

edge, and all subsequent, singularities. This is similar to what has been observed in studies with
Random Matrix theory [32] and models with singular Langevin drifts [33]. It is worth noting that
away from the thermodynamic limit the branch cuts predicted by the Yang-Lee theorem become a
series of poles that coalesce as 𝑉 → ∞.

3.2 Three dimensional field theory

We have performed our simulations with parameters 𝑚2
0 = 𝜆0 = 1 and 𝑁 = 2 for various values

of ℎ0. Preliminary, small volume, simulations have been carried out in 𝑉 = 83 in order to verify the
(dis)continuity of the magnetisation for ℎ𝐼 smaller (larger) than ℎ𝑐 as function of ℎ𝑅, by choosing
two representative values of ℎ𝐼 . The results are shown in figure 2, and demonstrate the expected
discontinuity for ℎ𝐼 > ℎ𝑐.

A proper scan for the critical external field along the imaginary axis1 was then performed at
volumes of 243, 283, and 323. Figure 3 presents our results for the magnetisation as function of ℎ𝐼 .
The real part resembles a graph of the magnetisation as a function of inverse temperature of the
Ising model. Both plots also exhibit non-differentiable behaviour around a certain value of ℎ𝐼 , with
the imaginary part having a cusp, rather than a kink. This is further investigated in figure 4 (left)
where we present the magnetic susceptibility. In the usual telltale sign of “phase transitions” in
finite volumes, the susceptibilities have peaks where the magnetisation exhibited non-differentiable
behaviour.

We have also computed the first two complex Langevin boundary terms [27] for the magneti-
sation and present the results for the second order one, 𝐵2(𝑀) in fig. 4 (right). The first order
boundary terms vanish within statistical errors. Since 𝐵2(𝑀) is in general larger than 𝐵1(𝑀) in the

1Our simulations have been performed with ℎ𝑅 = 10−4, akin to what is usually done in studies of the Ising model.
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Figure 2: Real (left) and imaginary (right) parts of the average magnetisation as functions of the real part of
the external magnetic field. Note that the horizontal axis is in units of powers of 10, except at 0. The graph
on the left shows the two expected behaviours for the magnetisation: for ℎ𝐼 < ℎ𝑐 it is continuous across
ℎ𝑅 = 0, and it displays a discontinuity for ℎ𝐼 > ℎ𝑐.
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Figure 3: Real (left) and imaginary (right) parts of the average magnetisation as functions of the imaginary
part of the external magnetic field. The results for the three different volumes considered here fall on top of
each other in the scale used in the plot. It is notable that for ℎ𝐼 ≈ 1.185 there is a kink in the real part of 𝑀 ,
while around the same value the imaginary part displays a cusp. Lines have been added to guide the eye.

cases considered here, the correction formula proposed in ref. [27] is not applicable. Moreover, this
observerd hierarchy of boundary terms casts a shadow on the reliability of complex Langevin simu-
lations in this model. It is also noteworthy that 𝐵2(𝑀) follows the same trend as the magnetisation
itself.

4. Summary and outlook

We have studied the O(𝑁) model, subject to a complex external magnetic field, on the lattice
via complex Langevin simulations. Our work has been performed at 𝑁 = 2 both a single site model,
with analytic solution, and on a three dimensional field theory.

Complex Langevin simulations on the single site model failed to exhibit the correct behaviour,
behaving similarly to what has been observed in Random Matrix Theories and models with singular
drifts. In three dimensions, complex Langevin results for the average magnetisation and its suscep-
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Figure 4: Left: absolute value of the (complex) magnetic susceptibility as a function of ℎ𝐼 for the three
volumes considered. The peaks exhibit the typical behaviour of finite volume phase transitions of growing
with the volume. Right: Negative of the real and imaginary parts of the second order boundary term for the
magnetisation, computed for𝑉 = 283. Similar behaviours have been observed for the other volumes. In both
plots lines have been added to guide the eye.

tibility behave similarly to Ising model simulations. From analysing the peak of the susceptibility
for different volumes it is possible to find the critical value of the external imaginary magnetic field
and, therefore, the location of the Lee-Yang edge singularity. This is very promising. However,
boundary terms are present and thus CL results must be interpreted with care. This is the subject
of ongoing research, both in order to verify the correctness of CL applied to this model and to find
the location of the Lee-Yang edge singularity.
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