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According to perturbation theory predictions, QCD matter in the zero-temperature, high-density
limits of QCD at nonzero isospin chemical potential is expected to be in a superfluid Bardeen-
Cooper-Schrieffer (BCS) phase of u and d̄ Cooper pairs. It is also expected, on symmetry grounds,
that such phase connects via an analytical crossover to the phase with Bose-Einstein condensation
(BEC) of charged pions at µI ≥ mπ/2. With lattice results, showing some indications that the
deconfinement crossover also smoothly penetrates the BEC phase, the conjecture was made that
the former connects continuously to the BEC-BCS crossover. We compute the spectrum of the
Dirac operator, and use generalized Banks-Casher relations, to test this conjecture and identify
signatures of the superfluid BCS phase.
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1. Introduction

There exist physical systems/setups, such as non-central heavy-ion collisions, compact stars
and their mergers, and likely the early Universe in some phase of its evolution, which consist of
strongly interacting matter which is, borrowing condensed matter physics nomenclature, “doped”
with an asymmetry in the number of up and down constituent quarks. This asymmetry results in
an excess of e.g. neutrons over protons or positively charged pions over negatively charged pions.
All mentioned systems made of isospin-asymmetric QCD matter are also characterized by some
nonzero temperature, as well as by an even larger nonzero baryon density, i.e. they also carry an
excess of matter over antimatter1.

To understand the thermodynamic properties of the mentioned systems, we would then need
to map the phase diagram of QCD at least as a function of the temperature and baryon and isospin
“doping”. Unfortunately, direct simulations of QCD in a setup characterized by a matter-antimatter
asymmetry, encoded in a nonzero baryon chemical potential µB, are hindered by the complex action
problem. Purely isospin asymmetric QCD matter, with a nonzero isospin density nI = nu − nd
encoded in a nonzero isospin chemical potential µI = (µu − µd)/2, constitutes, instead, a setup
which is amenable to direct Monte Carlo simulations.

It is certainly useful to study the QCD phase diagram in the (T, µI) plane at µB = 0, both
as a first step towards a more complete description, and also to explain behaviour/properties of
the mentioned physical systems, which result in particular from their isospin asymmetry (see e.g
studies about the early Universe starting with large lepton flavour asymmetries [2–4]).

As anticipated by perturbation theory andmodel calculations [5, 6], lattice simulations found [7,
8] (see Fig. 1(b)) for theQCDphase diagram in the (T, µI) plane, an interesting and complex structure
with at least three phases. The existence of a fourth BCS phase is also expected because perturbation
theory, applicable in the limit |µI | � ΛQCD , predicts that the attractive gluon interaction forms
pseudoscalar Cooper pairs of u and d̄ quarks at zero temperature [5]. Model calculations also
confirmed the existence of a BCS phase at nonzero temperature (see e.g. [6]) and proposals for
signatures of the BCS phase were made also in the context of two-color QCD [9] and in chiral
perturbation theory [10]. The transition between the BEC phase and the BCS phase is expected
to be an analytic crossover, given that the symmetry breaking pattern is the same. Moreover, as
lattice simulations at nonzero isospin chemical potential have also revealed large values for the
Polyakov loop within the BEC phase [7], considered as hints for a superconducting ground state
with deconfined quarks, the conjectured phase diagram looks like Fig. 1(a).

In this proceedings we report on our progress in attempting to cross-check the existence of the
BCS phase in Fig. 1(a) and locate its boundaries by looking at the complex spectrum of the Dirac
operator, in light of a Banks-Casher type relation [11] (cf. Eq. (4)).

1We neglect electromagnetic fields in this study. These are considered by another of our studies presented at this
conference [1].
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Figure 1: Conjectured 1(a) [5, 6] and measured 1(b) [7, 8] phase diagram of QCD at pure isospin chemical
potential.

2. Simulation setup and observables

Indicating by Sud = ψ̄Mud ψ the continuum action for the light quarksψ = (u, d)> in Euclidean
spacetime, the fermion matrixMud in the considered setup reads

Mud = γµ (∂µ + iAµ) 1 + mud1 + µIγ4τ3 + iλγ5τ2 , (1)

with Aµ the gluon field, and τa the Pauli matrices. The explicit symmetry breaking term iλγ5τ2
with λ referred to as pionic source coupling to the charged pion field is unphysical, but crucial in
order to (1) enable the observation of the spontaneous breaking of the continuous Uτ3(1) symmetry
and (2) regulate simulations in the BEC phase [12–14]. A safe λ → 0 extrapolation as devised in
Ref. [7] is necessary to obtain physical results.

For our measurements we consider 2+1-flavor QCD with µI > 0 and λ > 0. The quark masses
are tuned to their physical values along the line of constant physics (LCP) from Ref. [15], with the
pion mass mπ ≈ 135 MeV. The Dirac operator is discretized employing the staggered formulation
and the rooting procedure as in Refs. [7, 8] where the phase diagram shown in Fig 1(b) was mapped
out. The lattices considered so far are N3

s × Nt lattices with Nt ∈ {6, 12} at various temperatures
T = 1/(Nta).

In the just described setup our observable of interest is the complex-eigenvalues spectrum of
the massless Dirac operator /D(µI). For the up quark, the eigenproblem reads

/D(µI) ψn = νn ψn , (2)

where the eigenvalues νn are complex numbers. Using chiral symmetry, i.e. /D(µI)η5+η5 /D(µI) = 0
(with η5 being the staggered equivalent of γ5), and hermiticity, i.e. η5 /D(µI)η5 = /D(−µI)†, the
eigenproblem for the down quark can be obtained from Eq. (2), and it reads

ψ̃†n /D(−µI) = ψ̃†n ν
∗
n , ψ̃n = η5ψn . (3)
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Figure 2: Contour plots of the complex spectrumof theDirac operator as obtained for a Ns = 24, Nt = 6 lattice
at λ/mud ∼ 0.29 and T = 155 MeV for isospin chemical potentials µI/mπ = 0.45 2(a), µI/mπ = 0.99 2(b),
µI/mπ = 2.30 2(c). The red dot indicates mud + i · 0.

Following Eqs. (2) and (3), for each eigenvalue in the up quark sector there is a complex conjugate
pair in the down quark sector, see Fig. 2.

The motivation behind our choice of observable lies in the existence of a Banks-Casher type
relation

∆
2 =

2π3

9
ρ(0), (4)

derived in Ref. [11] for the zero-temperature, high-isospin-density limits of QCD, which provides
us with a prescription on how to obtain information on the BCS gap ∆ from the density of the
complex Dirac eigenvalues ρ(ν) evaluated, for the massless case, at the origin in the complex plane
ρ(0).

In Ref. [11], the T = 0 partition function Z(M) as a function of the quark mass matrix M is
considered both in the fundamental QCD-like theory and in the corresponding effective theory valid
for |µI | � ΛQCD . Taking suitable derivatives then yields in the fundamental theory an expression
proportional to ρ(0), and in the effective theory one proportional to ∆2 . The Banks-Casher-type
relation is obtained by identifying these results as in Eq. (4).

In our work we assume that a similar relation holds also in our setup with nonzero quark
masses and temperatures. To account for the nonzero quark masses in our simulations we evaluate
the density ρ(ν) to mud + i · 0 rather than to zero neglecting, at first, possible corrections due to
non-zero masses and temperatures.

3. Results

In order to solve the relevant eigenproblem in Eq. (2) we employ the Scalable Library for
Eigenvalue Problem Computations (SLEPc) [16], which is a software package for the solution of
large sparse eigenproblems on parallel computers. The solver used is a Krylov-Schur solver, whose
implementation within SLEPc is suited for non-Hermitian problems. We compute the closest to the
origin (in modulo) ∼ 150 eigenvalues of the non-hermitian Dirac operator.

We evaluate ρ(mud) by using kernel density estimation (KDE), a non-parametric way to
estimate the multivariate probability density function from the measured spectrum. Such technique
is implemented in the python library scikit-learn [17], which we employ for the analysis.
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Figure 3: 3(a) ρ(mud) plotted as a function of µI/mπ at eight different (approximate) values for T , for
Nt = 12 and the smallest considered value of the pionic source λ = 0.0013. 3(b) Density map plot for ρ(mud)
in the T vs. µI/mπ phase diagram for Nt = 12, and λ = 0.0013. The BEC boundary as obtained in Ref. [7]
for Nt = 12 is also shown.

By inspecting the density plots in Fig. 2, it can be observed, how only for large enough µI
values the complex spectrum gets wide enough in the real direction to encompass the red dot in
Fig. 2 at mud, which results in ρ(mud) , 0. At µI < mπ/2 the eigenvalues are, instead, clustered
along the imaginary axis and ρ(mud) = 0. At the largest simulated µI values, due to the drift of the
eigenvalues away from the real axis, a decrease in ρ(mud) is observed. A quantitative assessment
of the impact of cutoff effects is necessary in order to tell to what extent they are responsible for the
µI-dependence of ρ(mud) at larger and larger µI.
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Figure 4: Same as Fig. 3(a), but showing only the
largest simulated µI.

Quantitative results for the spectral density
are shown in Fig. 3. It is interesting to match
the µI- and T- dependence of ρ(mud) with the
location of the boundary of the BEC phase as de-
termined by the onset of the pion condensate Σπ ,
see Fig. 3(b). What can be observed in Figs. 3(a)
and 3(b) is that the signal for the interpolated spec-
tral density becomes nonzero exactly at µBEC

I (T ),
that is at the location of the BEC phase boundary
for the considered temperature.

Results also show the alreadymentioned drop
in the values of the interpolated spectral density
at larger values of µI. As already suggested lattice
artefacts are expected to suppress ρ(mud), just as
they do with Σπ [12–14]. The results presented
here have been obtained on the finest ensemble
produced so far (Nt = 12), for which aµI < 0.25
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Figure 5: 5(a) ρ(mud) plotted as a function of T at five different (approximate) values for µI, for Nt = 12 and
the smallest considered value of the pionic source λ. 5(b) ρ(mud) as a function ofT for Nt = 12, µI/mπ ∼ 2.0
and three different values for λ.

up until µI/mπ 2.5, and therefore we expect lattice artefacts to be under control. However, disentan-
gling the signal for the BCS gap from discretization errors at even larger µI is difficult and requires
a dedicated systematic study.

A closer inspection to the trend with µI of ρ(mud) at µI/mπ > 1.5 reveals (see Fig. 4) that,
statistically significant nonzero values are extracted also at the largest simulated µI.

Fig. 5(a) shows the sensitivity of ρ(mud) to crossing the BEC boundary by raising the temper-
ature at (approximately) fixed values of the isospin chemical potential. It can also be seen how the
interpolated spectral density is rather weakly if at all dependent on the temperature for low enough
temperatures.

In Fig. 5(b) one can see how the obtained results for ρ(mud) are rather weakly if at all dependent
on the value of the pionic source.

As compared to the preliminary results on the complex Dirac spectrum at nonzero isospin
density discussed in Ref. [18], larger volumes, finer lattices and multiple values of the pionic source
have been considered for the present study. In all considered setup, the signal shows the same
qualitative trend.

4. Discussion and conclusions

On the basis of the presented results, we can conclude that the interpolated spectral density
is undoubtedly sensitive to the BEC boundary. No definite conclusions can, instead, be drawn yet
on its sensitivity to the BEC-BCS crossover. There a more systematic analysis is ongoing aiming
at disentangling growing cutoff effects at growing µI values, from any genuine nonperturbative
µI-dependence as well as T-dependence of the BCS gap.

There are results in the literature [5, 19] about the µI-dependence of the gap as obtained using
perturbation theory. ∆ is found to be a rising function of µI for µI ≥ 1 GeV, but, interestingly
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enough, from values that - at our energy scale - would be just a factor 4 smaller than the smallest
values we measured for the density. Obviously, we are rather far from that regime, but we plan
simulations at larger µI values to check if the interpolated spectral density eventually starts growing
with µI.

It also must be kept in mind that the Banks-Casher-like relation that we have been using here as
a prescription to connect the spectral density with the BCS gap is strictly valid, in the |µI | � ΛQCD

limit, only for T = 0.
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