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Higher order quantization conditions... Frank X. Lee

1. Introduction

The quantization condition (QC) for zero-momentum states of two equal-mass, spinless particles
in a periodic cubic box worked out by Lüscher [1] opened up new opportunities for studying
hadron-hadron interactions. The Lüscher method, as it is known now, is very general. It does not
matter how the energy levels are obtained, be it in quantum mechanics, effective field theories, lattice
QCD, or any other method. The same quantization condition applies and the results are the same up
to exponentially suppressed finite-volume corrections. For this reason, it has become the method
of choice for studying strongly-interacting systems where traditional methods like perturbation
theory do not apply. In the field of nuclear and particle physics, the method has proven especially
successful. Various extensions to the method have since been made to enhance its applicability in
the two-hadron sector, including moving frames [2, 3], asymmetric boxes [4–8], multiple partial
waves and coupled-channel scattering [6, 9–13]. Significant progress towards a complete three-body
scattering quantization condition has also been made in recent years, though we do not discuss it
here. See Refs. [14–20] for reviews of theoretical developments, and some first applications to
three-pion and kaon scattering.

In this work we derive and validate the quantization conditions for two spinless particles of
unequal masses, rest and in moving frames, cubic and elongated geometries, and partial waves as
high as ℓ = 5 (The full version is in Ref [21]).

2. Quantization condition

The quantization condition connects the infinite-volume phaseshifts with the discrete energies
of two-body states in the box [1],

det
[
428 X (:) − " (:, !) + 8

" (:, !) − 8

]
= 0. (1)

The " (:, !) is a hermitian matrix function of CM momentum and box size, whose explicit form is
given by

";<,;′<′ =
(−1);

[c3/2

;+;′∑
9=[;−;′ |

9∑
B=− 9

8 9

@ 9+1
/ 9B (@2, [)�;<, 9B,;′<′, (2)

where we have adapted it to include the I-elongated box geometry via [. In practical applications,
the matrix is further adapted to the symmetry of box. The zeta function is defined by

Z;<(@2, [) =
∑
ñ

Y;<( ñ)
ñ2 − @2 , ñ = (=G , =H , =I/[), @ =

:!

2c
. (3)

The poles of the zeta function =̃2 = @2 correspond to free-particle energies in the box.
In group theory language, the symmetry group for states at rest is $ℎ in cubic box, �4ℎ

in I-elongated box. For moving states, the symmetry is described by the so-called little groups,
depending in which direction the system is moving in the fixed box. We will consider four distinct
moving frames, 3 = (0, 0, 1), 3 = (1, 1, 0), 3 = (1, 1, 1), and 3 = (0, 1, 2). In both cubic and
I-elongated boxes, 3 = (0, 0, 1) has �4E as the little group, 3 = (1, 1, 0) corresponds to �2E , and
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Higher order quantization conditions... Frank X. Lee

3 = (0, 1, 2) corresponds to �1E . However, for 3 = (1, 1, 1), the little group is �3E in cubic box and
�1E in I-elongated box. For moving frames, the zeta functions in Eq.(3) need to be modified to
include the boost d,

Z;<(@2, d, [) =
∑

ñ∈%d ([)

Y;<( ñ)
ñ2 − @2 , %d ([) =

{
ñ ∈ R3 | ñ = [̂−1(m − 1

2
� d),m ∈ Z3

}
. (4)

The factor � in non-relativistic kinematics is � ≡ 1 + <2−<1
<2+<1

. This is to be contrasted with the

relativistic version � = 1 + (<2
1 −<

2
2)/,

2 where, =

√
<2

1 + :2 +
√
<2

2 + :2 is the invariant energy
of the system. Due to lack of parity in moving frames, there is mixing between odd and even ; states
within a given irrep. This means that the phaseshift formulas are generally more complicated for
moving states than for the ones at rest. One consequence is the appearance of zeta functions with
odd values of ;.

In Table 1, we give an overview of the total angular momentum content in each irrep (or QC),
as part of a larger summary. It is important to realize that each QC is a single condition that couples
to an infinite tower of ; values; only the lowest few are shown. The lowest partial wave in each irrep
can be computed using the energy levels in the box and if the higher partial waves can be neglected.

3. Two-particle energies in a periodic box

To check our derivation of the quantization conditions discussed in the previous section, we
want to calculate the spectrum of the two-particle states in a finite box with periodic boundary
conditions. To make the calculation transparent we will use a non-relativistic setup with the particles’
interaction controlled by a rotationally invariant potential. We will solve the problem numerically
using a lattice discretization of the Hamiltonian and the associated Schrödinger equation. The results
are extrapolated to the continuum limit before comparing them to the results of the quantization
conditions.

We consider the general case ! × ! × [! where [ is the elongation factor in the I-direction. We
solve the Schrödinger equation �Ψ = �Ψ in the box frame (lab frame). We project the problem to a
new basis consisting of total momentum V and relative coordinates r in the lab frame,

|V, r〉 =
∑
m

48V ·m |m,m + r〉, (5)

where |n1, n2〉 is the ket in the position representation for two particles.
The projection leads to the reduced problem�k(V, r) = �k(V, r) where the lattice Hamiltonian

is given on a seven-point stencil,

� |V, r 〉 = −~
2

2

∑̀ −1
18002[

− 2
(
438%`0

<1
+ 1
<2

)
|V, r + 30 ˆ̀ 〉 + 27

(
428%`0

<1
+ 1
<2

)
|V, r + 20 ˆ̀ 〉 − 270

(
48%`0

<1
+ 1
<2

)
|V, r + 0 ˆ̀ 〉

− 2
(
4−38%`0

<1
+ 1
<2

)
|V, r − 30 ˆ̀ 〉 + 27

(
4−28%<D0

<1
+ 1
<2

)
|V, r − 20 ˆ̀ 〉 − 270

(
4−8%`0

<1
+ 1
<2

)
|V, r − 0 ˆ̀ 〉

+ 490
(

1
<1
+ 1
<2

)
|V, r 〉

]
+ +! (r) |V, r 〉 +$ (06) .

(6)
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Higher order quantization conditions... Frank X. Lee

We need to take the continuum limit to obtain box levels from lattice levels. This is done by
increasing the number of grid points and deceasing the lattice spacing simultaneously while keeping
the box size fixed, lim 0→0

#→∞
#0 = !.

We compare this spectrum with the one derived from the quantization conditions. Both the
phaseshifts in the infinite volume and the discrete energy levels in the finite volume are independently
obtained. They are then used in the QC to examine its efficacy. This check is useful because the
QC is often used self-consistently to ‘reverse engineer’ the expected energy levels based on model
parametrization of the phaseshifts, with its correctness assumed.

4. Infinite volume phaseshifts

The first step is to compute the phase shifts for a simple potential. Consider two-particles
<1 = 0.138 GeV and <2 = 0.94 GeV, interacting through a repulsive potential of Gaussian fall-off,

+ (A) = �4−0.5(A/'0)2 (7)

where � = 1.0 GeV and '0 = 1.25 fm. The range of the potential is about 4 fm. The phaseshifts can
be obtained readily by the variable phase method [22]. For partial waves up to ; = 5 and momenta
up to about 0.2 GeV, they are shown in Fig. 1. The phaseshifts have the expected X; (:) ∼ :2;+1

asymptotic behavior. The potential is chosen so that in our tests partial waves up to ; = 5 can be
checked for convergence in the : range we use. The goal is to check our derivation for the higher
order QCs by comparing these energies produced by these phaseshifts with the two-particle spectrum
in finite volume.
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Figure 1: Phaseshift of the test potential for the lowest six partial waves.

5. Results and discussion

Since the range of the potential is about 4 fm, a box size of ! = 24 fm is sufficient to make the
exponential finite-volume effects negligible. To take the continuum limit we use lattices of 203 with
0 = 1.2 fm, 243 with 0 = 1 fm, and 303 with 0 = 0.8 fm for cubic case. For the elongated case we
use the same three lattice spacings and the same size ! = 24 fm in the G-, and H-direction but we
elongate the I-direction by a factor of [ = 1.5. The lowest non-zero momentum in the spectrum is
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controlled by the box size :<8= = 2c/(![). For the higher : values the density of states gets higher.
We study states with : < 0.2 GeV. In this :-range only the phaseshifts for ℓ ≤ 5 are significantly
different from zero (see Fig. 1). Therefore, we expect convergence of the QCs by ; = 4 or ; = 5. We
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Figure 2: Phaseshifts reconstruction for the lowest partial wave in the �16 (left) and )1D irreps of rest frame
3 = (0, 0, 0) in cubic box. The black point are the predicted phaseshift via Lüscher formula. The red curve is
the infinite-volume phaseshift. The faint vertical lines correspond to non-interacting levels in the box.

show in Fig. 2 the phaseshift prediction for the lowest ; in �16 and )1D by feeding the interacting
energy levels into the QC. We see the reconstruction is excellent up to : = 0.2 GeV, but with notable
exception points. It turns out these “pinched” points are sensitive to the 2nd partial waves in the QC.
Solving for the second partial wave from a generic QC at order 2 with no multiplicities, we have

cos X2nd = "22 +
|"12 |2

cos X1st − "11
. (8)

The “pinched” points occur very near the pole where |"11 | � 1 and then we can approximate the
equation by setting cos X1st = 0 and solve for X2nd. Using above-mentioned �16 and )1D as examples,
we plot in Fig. 3 cos X2=3 extracted this way for ; = 4 and ; = 3. We see that the exception points
discussed in Fig. 2 fall on the curve for the infinite-volume phaseshift of the 2nd partial wave. This
suggests that X1BC (:) and X2=3 (:) can be separately isolated by considering the QC at order 1 and
order 2 respectively.

As a general method to assess the effects of higher partial waves, we investigate the convergence
of the QC by feeding it the infinite-volume phaseshifts and comparing the resulting levels with the
box levels. We check the convergence order by order: ‘order 1’ has only the lowest partial wave,
‘order 2’ with the next partial wave added, and so on. In the limit that all the partial waves are
included, perfect agreement is expected. The comparison involves very small differences that are not
easily discernible visually. To better gauge the quality of the convergence, we introduce a numerical
measure

j2 =
(:box − :QC)2

(:box − : lat)2
, (9)

where :box is the continuum box level extrapolated from the three lattice spacings, : lat the level
on the lattice with the finest lattice spacing, and :QC the solution from the QC at each order. The
extrapolation is a linear function of 06, the error present in the Hamiltonian from the 7-stencil
approximation in Eq.(6). Basically, the convergence is measured against the tiny difference between
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Figure 3: Second partial wave in �16 (top) and )1D (bottom) of cubic box. The black points are cos X2nd
in Eq.(8) with cos X1st neglected, evaluated at the pinched box levels from order 1. The red curve is the
infinite-volume cos X2nd. The faint vertical lines are the free-particle poles.

the continuum box levels and those from the largest lattice used in the extrapolation (about 6 decimal
places, or 1 eV out of 1 MeV). Note that the j2 introduced is not in the standard sense of curve-fitting
where the best value is around 1. Here the smaller its value, the better the convergence. This is a
highly sensitive measure: non-convergence of a single level will have a large contribution to the
total j2.

We have confirmed the convergence of all 45 cases in the same manner, as summarized in
Table 1. All 45 QCs can be found in Ref [21]. One point to emphasize is that to get agreement for
certain cases we needed to consider QC all the way to order 5. The irreps in question (No. 10, 14,
18, 21, 33, 38, 42, 44) are, as expected, the ones that allow the most mixing between partial waves.

6. Conclusion and outlook

We derived higher-order Lüscher quantization conditions (QC) for scattering of two spinless
particles of unequal masses. Our results were checked numerically by comparing the QC predictions
with the spectrum of two-particle states in a box computed by solving the Schrödinger equation. This
is done using a simple potential model in non-relativistic quantum mechanics. Both the phaseshifts
in infinite volume and energy levels in finite volume are independently generated in a well-controlled
fashion. Here is a summary of our findings.

1) We considered a variety of scenarios: rest frame and four moving frames, cubic and elongated
geometries. In total, we examined 22 QCs in the cubic box and 23 QCs in the elongated box.
The five lowest partial waves in each QC are examined. In some cases, up to ; = 5. Some of
the QCs are re-derived to include higher partial waves, others are new. Generically, we expect
the QCs to be valid up to terms which vanish exponentially with the box size.

2) We choose the potential and the box-size so that the systematics associated with finite-volume
are negligible, on one hand, and on the other the results are sensitive to partial-waves as high
as ℓ = 5. This allows us to provide very stringent tests for our results. The numerical checks
are done at high precision (to six decimal digits, or differences of 1 eV resolved out of 1 MeV).
Up to CM momentum : = 0.2 GeV and up to 40 levels are examined for each of the QCs.
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Table 1: Summary of the total j2-measure showing convergence for all QCs discussed in this work. Here
; (=) indicates the lowest few partial waves (and multiplicities) that couple to the QC; # is the number of levels
under the cutoff of : = 0.2 GeV or 40 levels. Detailed convergence data for every individual energy level in
Ref [21].

Cubic box
No. 3 Group QC ; (=) N Order 1 Order 2 Order 3 Order 4 Order 5

1 (0, 0, 0) $ℎ �16 0, 4, 6, · · · 14 277.206 3.7296
�1D 9, 13, 15, · · ·
�26 6, 10, 12, · · ·

2 �2D 3, 7, 9, · · · 6 0.0458813
3 �6 2, 4, 6, · · · 16 2123.07 5.44639
4 �D 5, 7, 9, · · · 5 0.0546959
5 )16 4, 6, 8(2) , · · · 9 0.243897
6 )1D 1, 3, 5(2) , · · · 22 67276.5 36.5936 3.35684
7 )26 2, 4, 6(2) , · · · 16 2485.36 2.70125
8 )2D 3, 5, 7(2) , · · · 14 4.55575 0.267262
10 (0, 0, 1) �4E �1 0, 1, 2, 3, 4(2) , · · · 40 4.08008 × 108 1.06106 × 1010 10175.7 284.022 6.92792
11 �2 4, 5, 6, · · · 15 7.46202 0.145375
12 �1 2, 3, 4, 5, · · · 34 276889. 402.025 5.9668
13 �2 2, 3, 4, 5, · · · 27 350956. 779.183 3.84012
14 � 1, 2, 3(2) , 4(2) , · · · 40 1.32751 × 107 72379.5 514.979 8.21687
14 (1, 1, 0) �2E �1 0, 1, 2(2) , 3(2) , 4(3) , · · · 40 1.96654 × 108 4.77126 × 106 17298.1 190.94 5.34113
15 �2 2, 3, 4(2) , 5(2) , · · · 40 54211.3 2998.61 3.01327
16 �1 1, 2, 3(2) , 4(2) , · · · 40 2.84806 × 106 47754.8 241.517 4.62961
17 �2 1, 2, 3(2) , 4(2) , · · · 40 9.36978 × 106 88719.7 308.013 6.28652
18 (1, 1, 1) �3E �1 0, 1, 2, 3(2) , 4(2) , · · · 40 9.16556 × 107 1.09895 × 106 22260. 115.412 3.53446
19 �2 3, 4, 5, · · · 26 111.322 0.44229
20 � 1, 2(2) , 3(2) , 4(3) , · · · 40 8.06257 × 106 23959. 271.289 4.13508
21 (0, 1, 2) �1E �1 0, 1(2) , 2(3) , 3(4) , 4(5) , · · · 40 1.01852 × 108 993629. 6858.3 17.3429 2.01417
22 �2 1, 2(2) , 3(3) , 4(4) , · · · 40 8.98645 × 106 37314.8 293.484 3.18387

Elongated box
No. 3 Group QC ; (=) N Order 1 Order 2 Order 3 Order 4 Order 5

23 (0, 0, 0) �4ℎ �16 0, 2, 4(2) , 5, · · · 40 4.06688 × 106 573.449 8.64225
24 �1D 5, 7, 9(2) , · · · 9 0.134224
25 �26 4, 6, 8(2) , · · · 3 0.00828583
26 �2D 1, 3, 5(2) , 7(2) , · · · 34 131946. 16.2795 10.7998
27 �6 2, 4(2) , 6(3) , · · · 38 2009.93 0.319341
28 �D 1, 3(2) , 5(3) , · · · 40 221693. 41.2595 8.52709
29 �16 2, 4, 6(2) , 8(2) , · · · 27 703.291 11.0395
30 �1D 3, 5, 7(2) , 9(2) , · · · 17 7.07159 0.168506
31 �26 2, 4, 6(2) , 8(2) , · · · 22 2093.46 0.192
32 �2D 3, 5, 7(2) , 9(2) , · · · 21 2.06599 0.488025
33 (0, 0, 1) �4E �1 0, 1, 2, 3, 4(2) , · · · 40 5.70458 × 108 9.64404 × 106 14025.4 166.777 11.0137
34 �2 4, 5, 6, · · · 21 40.092 0.21509
35 �1 2, 3, 4, 5, · · · 40 161200. 274.945 5.1077
36 �2 2, 3, 4, 5, · · · 39 318459. 845.868 2.82798
37 � 1, 2, 3(2) , 4(2) , · · · 40 1.66366 × 107 79648.3 353.966 7.28402
38 (1, 1, 0) �2E �1 0, 1, 2(2) , 3(2) , 4(3) , · · · 40 2.19334 × 108 3.60527 × 106 9669.56 99.3024 27.4093
39 �2 2, 3, 4(2) , 5(2) , · · · 40 34211.4 295.311 0.804797
40 �1 1, 2, 3(2) , 4(2) , · · · 40 2.97904 × 106 28179. 115.601 6.80754
41 �2 1, 2, 3(2) , 4(2) , · · · 40 9.05592 × 106 71558.8 146.885 18.7042
42 (1, 1, 1) �1E �1 0, 1(2) , 2(3) , 3(4) , 4(5) , · · · 40 5.45564 × 108 2.89417 × 106 15983.3 39.1208 8.00598
43 �2 1, 2(2) , 3(3) , 4(4) , · · · 40 6.85779 × 106 23813.9 69.434 3.24328
44 (0, 1, 2) �1E �1 0, 1(2) , 2(3) , 3(4) , 4(5) , · · · 40 3.79138 × 108 3.16621 × 106 6213.69 17.0296 5.34524
45 �2 1, 2(2) , 3(3) , 4(4) , · · · 40 1.27375 × 107 45256.8 146.374 2.672577
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3) We found sensitivity to the second lowest partial wave in selected QCs through ‘pinched’
levels which coincide with free-particle poles. The sensitivity can be used to provide an
approximate phaseshift for the second lowest partial wave despite the presence of the lowest
one in a particular channel, but this must be determined on a case by case basis. If such levels
are encountered in lattice QCD simulations, they can be either ignored or used to estimate the
second partial wave.

4) For the most part, we find elongated boxes work just as well as cubic ones. This bodes well for
using elongated boxes as a cost-effective way of varying the kinematic range with a modest
increase in the lattice volume.

5) Boosting of the two-particle system in both the cubic and elongated boxes allows lower
energies to be accessed, thus a wider coverage. The trade-off is the loss of parity which means
more mixing of partial waves.

6) The effort is already paying dividends. For example, we checked the integer-� QCs in Ref. [23]
for 3 = (1, 1, 0) and 3 = (1, 1, 1) and found agreement with ours, despite having different
forms due to different basis vectors. Those QCs are only given for up to ; = 2. Here we
extend up to ; = 4. We also checked against �3E up to ; = 4 from an independent source [24]
and found agreement. We also found a few typos in the QCs included in Ref. [4]. We also
checked against all the expressions up to ; = 4 for spinless particles of equal mass at total zero
momentum in non-elongated boxes given in Ref. [1] by setting <1 = <2 in our expressions
and found agreement.

For outlook, we envision the following possibilities.

1) The QCs can only be used to extract phaseshifts from energy only for the lowest partial waves
in each irrep. The predictions are affected by cutting off all the higherr partial waves. The
severity is not known a priori and it depends on the box geometry and the total momentum of
the state. The problem can be turned on its head: can we extract the higher partial waves by
considering multiple QCs simultaneously? We have seen in limited cases that higher partial
waves can be isolated in a single QC despite the presence of a lower one. Is there a systematic
approach, taking advantage of multiple irreps, moving frames, and box size?

2) We note that the same methodology could be easily applied for other potentials, if there is a
physical problem that requires calculation of the two-particle spectrum in a finite box. Any
interaction potential can be used in this approach, including potentials given in numerical
form or nonlocal potentials + (A, p) where p can be treated as finite differences on the lattice.

3) The formalism can be used to study the finite-volume effects in lattice QCD simulation of
physical systems, such as the the magnitude of exponential finite-volume effects ignored by
the QC’s by considering a smaller box (3.5 to 6 fm); the effect of the range of the model
potential; and/or the finite-volume spectrum in the presence of shallow bound states. Even
using the naive $ (02) discretization to study the influence of cutoff effects on the extracted
finite-volume energies could be interesting.
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4) The formalism can be applied with minimal modification to systems with two integer spins,
such as cd or dd scattering. The same is true for two spin-1/2 particles, such as nucleon-
nucleon scattering. The spins and orbital angular momentum couple to an integer total angular
momentum �, making such systems essentially ‘meson-like’. There is a plethora of NN
interaction potentials to work with. It would be interesting to investigate coupled channels in
such systems.

5) Another direction is the extension to systems with total half-integer �, such as a spin-0 particle
and a spin-1/2 particle (a classic example being the delta resonance in pion-nucleon scattering).
Group theory for double-cover groups are involved for half-integer total angular momentum.
The QCs for half-integer � should also be checked since they are even more involved than the
ones for integer spin. For this case the Hamiltonian must be modified to include spin-orbit
coupling, such as the Fourier basis approach [25].

We thank Colin Morningstar for helpful communications. This work is supported in part by the
U.S. Department of Energy grant DE-FG02-95ER40907.
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