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It is known that the deconfining transition of QCD is accompanied by the appearance of localized

eigenmodes at the low end of the Dirac spectrum. In the quenched case localization appears exactly

at the critical temperature of deconfinement. In the present work, using quenched simulations

exactly at the critical temperature, we show that the localization properties of low Dirac modes

change abruptly between the confined and deconfined phase. This means that in the real Polyakov

loop sector, the mobility edge has a discontinuity at the critical temperature. In contrast, in the

complex sector, there is no such discontinuity at Tc, even the lowest Dirac modes remain localized

at the critical temperature in the deconfined phase.
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Figure 1: Scatter plot of the Polyakov loop in the complex plane. The encircled regions are the different

sectors, the confined in the center (red circle), the deconfined real sector on the right (blue circle) and the

deconfined complex sectors to the left (green circles).

1. Introduction

The spectrum of the QCD Dirac operator is well known to encode many important features of

the underlying gauge theory. In particular, it undergoes dramatic changes at the finite temperature

transition into the quark-gluon plasma state. In the present work we study how certain properties

of the Dirac spectrum change at the finite temperature phase transition of the pure SU(3) gauge

theory. The pure gauge theory provides a good testing ground for this study, since – in contrast to

QCD with physical quark masses – this system has a genuine first order phase transition, not just

a crossover. As the character of the gluon fields changes dramatically at the phase transition, the

corresponding changes in the Dirac spectrum can be easily detected.

The phase transition of the quenched theory is signaled by the spontaneous breaking of the Z(3)

symmetry of the Polyakov loop. While in the low temperature, confining (symmetric) phase the

expectation of the Polyakov loop is zero, above the phase transition temperature, in the deconfined

phase, the symmetry is spontaneously broken and the Polyakov loop develops a nonzero expectation

value, belonging to one of the three Z(3) sectors. In the present work we perform quenched

simulations exactly at the phase transition temperature, where in a finite volume the system can

tunnel between the confined and deconfined phase. Therefore, in a simulation performed at the

transition temperature we can sample both phases, and in fact, in the deconfined phase all three

Polyakov loop sectors as well.

Concerning the Dirac spectrum we have to distinguish three different sectors in terms of the

Polyakov loop, and the Dirac spectrum is expected to behave differently in these sectors. These

are the confined phase, the real sector in the deconfined phase and the two complex sectors in the
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Figure 2: The spectral density of the overlap Dirac operator on the three ensembles of 483 × 8 lattice

configurations at Wilson β = 6.063.

deconfined phase. Due to the complex conjugation symmetry, Dirac spectra in the two complex

sectors are the same and we do not have to treat these sectors separately [1]. In Fig. 1 we depict the

different sectors by showing a scatter plot of the complex Polyakov loop on an ensemble of 483 × 8

lattice configurations exactly at the critical temperature. We can see that although the probability of

finding the Polyakov loop in the four above mentioned sectors is enhanced, there is still considerable

tunneling among the different sectors.

2. Details of the simulation

Let us first summarize the technical details of the simulations. We generated quenched gauge

field configurations of spatial linear size L = 48 and temporal size Nt = 8 using the Wilson gauge

action at the critical value of the coupling β = 6.063. The configurations were separated into three

different groups (sectors) according to the value of the average Polyakov loop. Configurations with

|P | < 0.03 were assigned to the confined phase, the ones with |P | > 0.06 were considered to be

in the deconfined phase. The latter configurations were further sorted into the real and complex

Polyakov loop sector according to the sign of the real part of the Polyakov loop . This set of criteria

was found to include the peaks of the Polyakov loop distribution into the respective sectors (see

Fig. 1). We computed the lowest 100 eigenvalues (with positive imaginary parts) of the overlap

Dirac operator separately on the three ensembles of configurations belonging to the above three

sectors.
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Figure 3: Scatter plot of the real part of the average Polyakov loop versus the 100th smallest Dirac eigenvalue

on a set of lattice configurations.

3. Results

The simplest quantity characterizing the Dirac spectrum is the spectral density. In Fig. 2 we

compare the spectral density in the three different sectors. The confined phase and the deconfined

complex sectors exhibit qualitatively similar spectral densities. In contrast, the spectral density in

the deconfined real sector is markedly different. It has a high, but narrow spike at the very low end,

above which the spectral density drops considerably. The narrow spike in the spectral density can

be attributed to mixing instanton-antiinstanton zero modes that produce several pairs of complex

eigenvalues of rather small magnitude [2]. Although in the other two sectors there is also a slight

accumulation of eigenvalues near zero, this is by far less pronounced than in the real sector. This

is caused by a stronger mixing of topological zero modes, which in the confined phase is due to a

higher density of topological fluctuations. In the deconfined complex Polyakov sectors this stronger

mixing can be attributed to the more extended nature of the topological zero modes [3]-[5].

The difference in the bulk spectral density between the real and complex sector in the confined

phase can be qualitatively understood by considering the lowest Matsubara modes in the free theory

with different boundary conditions. Indeed, the effective boundary condition for the Dirac equation

is a combination of the phase π, coming from the antiperiodic boundary condition for fermions, and

the phase of the Polyakov loop. In the real sector the Polyakov loop phase is zero, in the complex

sectors, it is ±2π/3, making the magnitude of the overall effective phase π and π/3, respectively.

Thus the lowest free Matsubara mode is much higher in the real sector, and this makes the density

of low-lying bulk modes considerably lower also in the interacting case. In fact, this is how the

breaking of the Z(3) symmetry by dynamical quarks can be understood, since the quark determinant

favors the real sector that has fewer small eigenvalues.
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Figure 4: The unfolded level spacing distribution, corresponding to localized and delocalized modes. The

red shaded region depicts the integral, defining I0.5 for the localized case, the blue one the difference of the

integrals for the localized and the delocalized case.

The direct connection between the Polyakov loop and the Dirac spectrum is further demon-

strated in Fig. 3, where we plot the real part of the average Polyakov versus the 100th eigenvalue of

the Dirac operator. For positive real part there is a strong correlation between the two quantities. It

is clear that the more ordered the Polyakov loop is in the real sector, the fewer low eigenvalues the

Dirac operator has.

4. Localization at Tc

It is known that in the high temperature phase the lowest part of the Dirac spectrum consists

of localized eigenmodes (for a recent review see [6]). Approaching the transition temperature

from above, the mobility edge, separating the low localized modes from the bulk of the spectrum,

moves toward zero, and when it reaches zero, all modes become delocalized, as expected in the

low temperature phase. In the quenched case, by extrapolating the mobility edge, it was found to

vanish exactly at the critical temperature [7, 8]. A naturally arising question is whether the lowest

part of the spectrum is localized or delocalized exactly at the critical point. More precisely, the

extrapolations presented in Refs. [7, 8] are compatible both with a continuously vanishing mobility

edge and one that has a discontinuity at the phase transition. Our present simulation, done exactly

at the critical point, gives us an opportunity to distinguish these two possibilities. This can be done

by looking at the localization properties of the lowest Dirac modes separately in the confining and

the deconfining phase and comparing the values of the mobility edge in the two phases.

The simplest way to decide whether eigenmodes in a certain region of the spectrum are

localized or delocalized is to compute the unfolded level spacing distribution (ULSD). If the modes

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
3
8

Localization at the quenched SU(3) phase transition Tamas G. Kovacs

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

I 0
.5

λ/Tc

localized

delocalized

confined
deconfined complex

deconfined real

Figure 5: The parameter I0.5 across the spectrum computed separately in the three different sectors, the

confined phase and in the deconfined phase in the real and the complex sector on the 483 × 8 lattices.

are localized, the corresponding eigenvalues are statistically independent, they are described by a

Poisson distribution, and the unfolded level spacing distribution is exponential. If the eigenmodes

are delocalized, the ULSD is well approximated by the Wigner surmise of the corresponding random

matrix universality class, which in the case of the overlap Dirac operator, is the unitary class. In

Fig. 4 these two distributions are shown. A convenient way to monitor how the distribution changes

across the spectrum is to consider instead of the whole distribution, just a single parameter that

can distinguish the two extreme cases (localized and delocalized). For this purpose we use the

parameter

I0.5 =

∫ 0.5

0

p(x)dx, (1)

where the upper limit of the integration was chosen to be the crossing point of the two distributions

(approximately 0.5) to maximize the difference between the two limiting cases (see Fig. 4).

To monitor how the ULSD changes across the spectrum and to determine the mobility edge,

we split the spectrum into narrow bins and in each bin separately compute the parameter I0.5. For

details of the unfolding and how we assign the eigenvalue pairs to bins, see the Appendix of Ref. [8].

We repeated this procedure for all three sectors, i.e. the confined phase and for the deconfined phase

in the real and complex sector. The results are shown in Fig. 5. It is clear from the figure that both

in the confined phase and in the deconfined complex sector, already the lowest Dirac modes are

delocalized, thus the mobility edge is effectively at zero. However, in the deconfined real sector,

in the one that would be selected if dynamical fermions were present, there is a finite range in the

spectrum above zero where the eigenmodes seem to be localized. In this region I0.5 almost reaches

the value expected for localized modes. The slight deviation might be due to the finite system size or

some more subtle effects (see Refs. [9]-[11]). Notwithstanding these details, it is obvious from the
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figure that the localization properties of the lowest Dirac eigenmodes change abruptly between the

confined phase and the deconfined real Polyakov sector (the physical sector). This is consistent with

the fact that the transition in the SU(3) pure gauge theory is first order. It is, however, surprising

that the deconfined complex Polyakov sector does not exhibit such an abrupt change, the lowest

modes there are delocalized, like in the confined phase.

5. Conclusions

In the present paper we studied how the spectral properties of the Dirac operator change at

the finite temperature first order phase transition of the pure SU(3) gauge theory. We showed that

the phase transition is accompanied by discontinuous changes in the spectral properties. Namely,

both the spectral density around zero and the localization properties of the lowest modes change

abruptly at the transition. In particular, there is a band around zero in the spectrum, where the

corresponding eigenmodes become localized at the transition in the real Polyakov loop sector. This

also implies that the mobility edge is discontinuous at the transition if we restrict our attention to the

real (physical) Polyakov loop sector. In contrast, in the complex sector even the lowest eigenmodes

remain delocalized at the transition. This property can be qualitatively understood by the more

extended nature in this sector of zero modes carried by Kraan-van Baal calorons.
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