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includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively.
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manner. A noteworthy feature of this approach is that no knowledge of the symmetries in the
Hamiltonian is required.
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1. Introduction

The application of machine learning (ML) in the physical sciences has seen a dramatic increase
in recent years, see e.g. Ref. [1] for a broad overview. In this contribution, we will discuss some
of the work done in Swansea in the past year [2–4]; in a parallel talk Ref. [5] was presented, and
hopefully at next year’s Lattice conference Ref. [6] can be discussed in person.

This contribution has three take-home messages, namely

1. one can (should) interpret ML outputs as physical observables;

2. critical behaviour can be derived from neural network observables only;

3. new Hamiltonians can be constructed with the inclusion of ML predictive functions.

We will discuss these three messages and their implications in the following sections.

2. ML outputs as physical observables

As is well known, ML excels in pattern finding. In the context of statistical physics and phases
of matter, this has been demonstrated in the by-now classic paper [7], in which it was demonstrated
that ML can classify phases and phase transitions in the two-dimensional Ising model and other
lattice systems. The task is formulated as a supervised learning problem: one generates (or
otherwise obtains) configurations of spins on a two-dimensional lattice for a variety of temperatures
or couplings. Configurations deep in the ordered and the disordered phases are labelled accordingly
and are used to train the ML algorithm, i.e. adjusting the parameters in the neural network of
choice such that the desired classification is correctly reproduced for the training set. New, unseen
configurations at intermediate temperatures or couplings are then provided to the network, which
returns the probability to be in the (dis)ordered phase. Repeating this on lattices of various sizes
allows one to study critical scaling and determine properties of the transition in the infinite-volume
limit. This approach has been used in the Ising model, q-state Potts models with varying q, scalar
φ4 theory, etc. An example of a convolutional neural network used in our work is shown in Fig. 1.

Following Ref. [7], the approach has been repeated and extended many times and is by now a
well-established procedure. The obvious question is therefore what can be added in this direction.

Figure 1: Example of a convolutional neural network (CNN) used for phase classification.
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As Fig. 1 illustrates, the input in the network are configurations, which have been generated according
to the Boltzmann weight e−βH/Z , with H the Hamiltonian of the system, β the inverse temperature
or coupling, and Z the partition function. By considering configurations at fixed β, the process
of computing the outcome of the neural network is identical to how observables are computed in
numerical simulations in statistical physics, namely by averaging over configurations. However, the
observable in this case is not expressed directly in terms of the degrees of freedom, such as e.g.
the magnetisation is, but is instead a rather complicated quantity, constructed as described above.
Since the outcome is the probability of being in the (dis)ordered phase, it nevertheless still has the
potential to act similar to an “order parameter” in the statistical system.

The reasoning above leads to the proposition that the output of a neural network should be
interpreted as an observable in a statistical system [2]. This observation is of interest, since it opens
up the possibility to use “standard” numerical or statistical methods, such as histogram reweighting.
Let Pi denote the neural network prediction a configuration with energy Ei is in the broken phase,
with 0 ≤ Pi ≤ 1. Averaging over configurations at fixed β then yields the expectation value as
provided by the neural network,

〈P〉 =
1
Z

∑
i

Pie−βEi, (1)

since the configurations labeled by i are Boltzmann distributed. One can now use standard histogram
reweighting [8] to extrapolate from a given β0 to other β values, according to

〈P〉(β) =
∑

i Pie−(β−β0)Ei∑
i e−(β−β0)Ei

, (2)

and obtain continuous dependence on the coupling constant.

Figure 2: Probability 〈P〉 to be in the broken (ordered) phase, as a function of the coupling β in the two-
dimensional Ising model on aV = 1282 lattice. The open and filled diamonds are predictions from the neural
network, while the line is obtained via histogram reweighting, starting from the filled diamond at β0 = 0.438.

This approach is illustrated in Fig. 2. The CNN shown in Fig. 1 is trained deeply in the
(dis)ordered phases, at β ≤ 0.41 and β ≥ 0.47. Predictions are made at intermediate values of
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Figure 3: Finite-size scaling using histogram reweighing in the Ising model, for the probability to be in the
ordered phase 〈P〉 (left) and its susceptibility δP = βV

(
〈P2〉 − 〈P〉2

)
(right).

β, indicated with the diamonds. The line is obtained employing histogram reweighting, using
only the datapoint at β0 = 0.438 (which is also obtained from the CNN). It is seen that the line
is in agreement with the direct predictions from the CNN and interpolates smoothly between the
disordered and ordered phases. The insets indicate agreement within statistical uncertainty between
the two approaches. More details can be found in Ref. [2].

All results in Fig. 2 are predictions from the CNN, with or without reweighting. In order to see
whether they give a quantitative prediction for properties of the transition, we carry out a finite-size
scaling analysis using the results obtained with histogram reweighting. The results are shown in
Fig. 3 for the probability 〈P〉 (left) and its susceptibility δP = βV

(
〈P2〉 − 〈P〉2

)
(right). We will

use these data to analyse critical scaling in the next section.

3. Critical behaviour from neural network observables only

Finite-size scaling should give us access to the critical coupling βc and critical exponents in
the infinite-volume limit. Recall that in the two-dimensional Ising model, βc = 1

2 ln(1 +
√

2), while
the correlation length and susceptibility diverge as ξ ∼ |t |−ν and χ ∼ |t |−γ, where t is the reduced
coupling, t = (βc − β)/βc. In a finite system of linear size L, this implies

|t | ∼ ξ−1/ν ∼ L−1/ν, χ ∼ |t |−γ ∼ L−γ/ν . (3)

We use these relations to extract the critical quantities from the observables determined within the
neural network, as shown in Fig. 3. Note in particular that the susceptibility is not the magnetic
susceptibility, but rather the one linked to the network probability 〈P〉. The result for the volume
dependence of βc is shown in Fig. 4 (left) and the obtained values for βc, ν and γ/ν are given in
Table 1. We observe good agreement with the expected results within the statistical uncertainty.

In order to demonstrate that this approach also works in a theory with continuous degrees of
freedom, we repeat the exercise in the two-dimensional λφ4 scalar field theory [3]. In this case,
exact results for the critical couplings are not available, but it is expected that the model is in the
same universality class as the Ising model. We fixed the coupling λ = 0.7 and vary the mass
parameter µ2 to locate the transition. Again this is repeated on various volumes. The result for the
volume dependence of µ2

c is shown in Fig. 4 (right), and the obtained values for µ2
c, ν and γ/ν are
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Figure 4: Determination of the critical parameters βc and µ2
c in the two-dimensional Ising model (left) and

the λφ4 theory (right) respectively using finite-size scaling of CNN predicted values.

Ising model βc ν γ/ν

CNN+Reweighting 0.440749(68) 0.95(9) 1.78(4)
Exact 1

2 ln(1 +
√

2) ≈ 0.440687 1 7/4 = 1.75
φ4 theory µ2

c ν γ/ν

CNN+Reweighting -0.95225(54) 0.99(34) 1.78(7)

Table 1: Numerical estimates for the critical parameters βc in the Ising model and µ2
c in the λφ4 theory at

fixed λ = 0.7, as well as for the critical exponents ν and γ/ν, in the infinite-volume limit.

given in Table 1. The value of the critical mass parameter agrees with the one found in the literature
[9], while the value of the critical exponents confirm the universality class.

We conclude that critical behaviour can be derived from observables obtained within the neural
network formulation, with adequate precision.

4. Extend Hamiltonians with ML predictive functions

We can now take these insights one step further and prepare new Hamiltonians, by including
the ML predictive function in the Hamiltonian itself [4], i.e. we couple the ML predictive function
to a conjugate source Y which, when varied to positive and negative values, can drive the system
into the ordered/disordered phases – in both directions – and also allows us to extract an additional
critical exponent.

Let us denote the ML predictive function, i.e the probability to be in the ordered phase, with
f , where 0 ≤ f ≤ 1. Since it is an intensive quantity, it is multiplied with the volume V and added
to the system Hamiltonian H, coupled to the conjugate source Y , to arrive at HY = H − V fY . This
formulation can be used to define a generating function,

〈 f 〉 =
1
βV

∂ ln ZY

∂Y
, ZY = Tr e−βHY , HY = H − V fY, (4)

etc, but more importantly, it can induce symmetry breaking without explicit symmetry breaking.
This is demonstrated in Fig. 5, where the response of 〈 f 〉 and its susceptibility χf are shown as

Y is varied. The three values of β correspond to the symmetric phase (β = 0.43), the known critical
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Figure 5: Response to the external field Y of the probability to be in the ordered phase 〈 f 〉 (left) and its
susceptibility χf (right) in the two-dimensional Isingmodel on a 642 lattice, for three values of the coupling β.

coupling (βc = 0.440687), and the broken-symmetry phase (β = 0.45) at Y = 0. We note that the
results for nonzero Y are again obtained using histogram reweighting. We indeed observe that as Y
is varied, the system moves seamlessly from one phase into the other, and in both directions as the
sign of Y is changed. This should be contrasted with the inclusion of an external magnetic field, in
which the symmetry is always broken explicitly, giving preference to the symmetry-broken phase.

To bring this discussion to an end, we finally note that an external field introduces a new critical
exponent. In the case of an external magnetic field, the correlation length varies as ξ ∼ |hmagnetic |

−θ ,
where in the Ising model θ = 8/15. Since it is not guaranteed that the dependence on Y will be
captured by the same exponent, we denote it with θY and conjecture that ξ ∼ |Y |−θY . We have
investigated this scaling numerically, using blocking and a renormalisation group (RG) analysis [4].
This study gives access to βc, ν and θY , with the results shown in Table 2. We observe excellent
agreement and confirm that θY can indeed be identified with the exponent θ.

We reiterate that this analysis only used quantities derived from the neural network, that there
is no need for knowledge of the order parameter, the pattern of symmetry breaking, the physical
meaning of external field, or the introduction of explicit symmetry breaking.

Ising model βc ν θY, θ

NN+RG 0.44063(21) 1.02(2) θY = 0.534(3)
Exact 1

2 ln(1 +
√

2) ≈ 0.440687 1 θ = 8/15 ≈ 0.5333

Table 2: Numerical estimates for βc and the critical exponents ν and θY in the Ising model, using the
Hamiltonian extended with the ML predictive function coupled to a source.

5. Summary

In this contribution we reviewed our proposal to identify outputs from neural networks as
observables in statistical physics. The first consequence is that this allowed us to introduce histogram
reweighting to be employed in supervised machine learning. This yields the possibility to extract
critical properties from a finite-size scaling analysis using quantities derived from neural networks
alone, to relatively high precision. Detailed knowledge of symmetries and order parameters is not
required. By coupling neural network outputs to an external source, we can drive the system into
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the ordered/disordered phases, unlike in the standard way of using an external magnetic field which
always breaks the symmetry explicitly.

We hope these observations can lead to new quantitative studies of phase transitions based on a
synergistic relation between machine learning and statistical mechanics, with ideas and inspiration
which is of interest to both communities.
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