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XSF renormalization of tensor operator Giulia Maria de Divitiis

1. Flavor non-singlet tensor operator

A non-perturbative determination of renormalisation group running between hadronic and
electroweak scales for the flavor non-singlet tensor operator

T, (%) = ih (x) oy 57 Y (x) M
Ty = 5[V Vvl 2
is very interesting from both phenomenological and theoretical points of view. The tensor enters

the amplitudes of effective Hamiltonians, which describe, for example, rare heavy meson decays,
neutron beta decays and possible Beyond Standard Model effects:

A= (flHey rli) = Cw () fIOW)i) 3

O~ (l_o-uve)(Qio-,uVQj), Gpv(éio-uVQj) cee 4

Moreover, the computation of the scale dependence of the renormalization factor completes the
ALPHA renormalization and improvement programme of the bilinear operators. For Ny = 0,2
such a study has appeared in ref. [1]. For Ny = 3, preliminary results of the RG-running in the

relatively high energy range 2 GeV < p < 128 GeV have been reported in ref. [2]. Ny = 3
renormalisation factors at different scales are also presented in ref. [3].

2. RG flow

We employ a ySF setup (see [4—8]), which is a mass-independent renormalization scheme.
Such schemes are characterized by RG equations of the following form:

0
ﬂaTR(ﬂ) =y(gr(u)) Tr (1) , Tr(p) = Zr(W)T, )

where gr is the running coupling. The anomalous dimension y has the perturbative expansion
—0
y(gr) 7 —gr® (o + y18r” + y28r* + O(8r°)). (©)

with a universal coefficient yg. The solution T (u) is expressed in terms of an integration constant
Tk, which is renormalization group invariant (RGI):

8r (1)

Trr = T (12) M} exp —/ d @—ﬂ} . 7
0

4r $1B(e) ~ bog

It is possible to factorize the running in many evolutions between two scales:

Tr(p)  Tr(u2) Tr(pr)

Tr(p) = o Trar » (®)
R(u Tr (ptn) Tr(11)  Tra !
leading naturally to the definition of the step scaling function:
T Z
o (s.u) = R(12)  Zr(u2) ©)

S Tr(p)  Zr(pn)’
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where s = % and u = gl% (u1). A common and convenient choice is to take successive scales at

fixed ratio s = 2:

8r(u/2)
v(8)

1
9% B(g) (10)

or(u) = or(2,u) =exp
gr(p)

On the lattice, the scale evolution can be studied non-perturbatively as a finite size scaling, with the
renormalization scale identified as the inverse of the lattice size u =

1.
g
1 2
p=7. U=gR (L) (11)

o (u) = lim (u, a/L) Y(u,a/L) = gr*(2L) (12)
Zr (gg.a/2L)
Zr(gh.a/L)

where a is the lattice spacing. The renormalization constants Zr (gg, a/L) are defined imposing

or(u) = lin})ET (u,a/L) Xr(u,a/L) = (13)

renormalization conditions on the correlation functions, as shown in eqgs. (22,23) of the next section.

Our actual RG flow materializes in a sequence of many lattices. We used the same gauge
configurations generated by the ALPHA collaboration for the determination of the quark mass
running (see [9] for details of the simulations). They refer to Ny = 3 massless Wilson-clover
fermions with Schrodinger Functional (SF) boundary conditions. The simulation parameters cor-
respond to a RG evolution from an hadronic scale up,4 of about 200 MeV to a perturbative scale
Hp: around 128 GeV. The peculiarity of this flow is the change of schemes at the intermediate
scale po/2 ~ 2 GeV: in the high energy region the running coupling is defined in the SF sheme
(gr = gsr) [10-12], while in the low energy region it is defined in the gradient flow (GF) scheme
(gr = gcr) [13, 14]:

Hhad GF scheme #0./2 SF scheme Hpi

} 4 ; > M
~ 200MeV ~ 2GeV ~ 128GeV

We impose the same definition of Zr (g%, a/L) at all scales, which implies that the anomalous
dimension, which is a different function of géF and of géF, has the same value at a given
renormalisation scale u:

y(u) = ysr(gsp (1) = vYor (8 (1)) . (14)

3. xSF Chirally Rotated Schrodinger Functional

In our study we adopt a mixed action approach (see also [15, 16]): while the sea quarks obey
the standard SF boundary conditions, for the valence quarks we impose ySF boundary conditions.
In the continuum and chiral limit, the SF and y SF setups are equivalent, being connected by a chiral
flavor transformation [4]:

B @ 3 ¥ -y =Ry
R = exp (l SYsT )|a:ﬂ/2 {J =R (15)
PiE%(li’yo)—)QiE%(1ii’yO’)/5T3), (16)
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where P, and Q. are the SF and the ySF projectors acting on fermionic fields at the boundaries.
At finite lattice spacing however, ySF breaks the parity-flavor symmetry Ps = iyoys7>, which
is recovered by introducing an extra boundary countertem of dimension 3 with coefficient z¢. The
parameters z¢ and the bare mass mg must be tuned non-perturbatively to their critical values in
order to restore parity-flavor and chiral symmetries up to discretisation effects. In practice the two
tunings can be done independently, so we inherited the value of the critical hopping parameter «
from the SF simulations [9], while we fixed z¢ imposing the vanishing of gl’:d , a Ps-odd correlation
function:
8o fd (x
= %M:L/Z =0 mr tuning (17
gid (X0)|XO:L/2 =0 Z¢ tuning.

Here m stands for the SF-PCAC quark mass, fa ; and fp are the usual SF correlation functions of
the improved axial current and the pseudoscalar density, while gZd is the ySF correlation function
involving the axial current with flavors u, d. See Table 1 for a brief overview of the correlation
functions. Some details of our tuning procedure can be found in ref. [16]

A boundary improvement counterterm proportional to the coefficients d is also needed in
order to cancel O(a) discretisation effects originating at the time borders.

Once these requirements are fulfilled, the argument of automatic O (a) improvement is achieved
in ySF [4, 5]: the Ps-even correlation functions receive corrections only at second order in the
lattice spacing, whereas the $5-odd ones are pure lattice artefacts:

Zeven = 8even " +0(a?) (18)
8oda = 0(a) . (19)
This property turns out to be particularly advantageous for the tensor operator, because O(a)
improvement does not require mixing with bulk counterterms in the correlation functions. For /1
with flavor combination ud, for example, the improvement coefficient ¢y is irrelevant, since the

vector correlation function Iy, being Ps-odd, is O(a). Therefore the Symanzik correction, being
O(a?), may be dropped:

T/Iw = T/JV + CT(g(%) a (5;1Vv - 5VV/J) s (20)

et = 14+ ep(g2yatioly” 1)

The rich variety of correlation functions is an interesting feature of y SF, offering the possibility of
several definitions of Zt, for example through the renormalization condition on the electric tensors
as well as on the magnetic ones:

l%”’(L/Z)re _ l%”’(L/Z)re

Zr1(go,a/L) = “electric” tensor Ty (22)
[lud [lud
1 1 Tree Level
(L) 1 (L)2), o
Z1(go,a/L) m - m “magnetic” tensor Tox = —=&oki; 15 -
,luu’ ,luu’ 2
1 1 Tree Level
(23)
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flavors fifp=u.du . d
bulk operators X=Vp,Ap,S, P Yi=Vi, Ak ’TkO’ka
SF xSF
K (xo)=—4 (X (x) 02T ax(x)=—3 (X2 (0 Q")

ky(xo)=—1 Shey (W20 0P) v )= L Shs, (v e

’ ’
ﬁ:—%<05flf2 Osfzfl > g1=—%<Q5ﬁ h Qﬁfzfl >
’ - et g
klz_% Zi:l <0]{1f2 Okufl> 11:_% Z?c:] <Q1{I 5 Qkfzfl >

OS5, , T WPoyslp (@) Q'=a®5y, 7, (V) 70y50-duw (2)
0 2=a8 5., T 5 WPl (2) QY =a 5y, C (V7RO L (1)

P. =11y 0. = 3(1 £iyyys)

Table 1: Brief overview of correlation functions in SF and ySF setups.

The subscripts re, im here denote the real and the imaginary parts. Both relations correspond to the
same SF renormalization condition in the continuum. In fact, the continuum equivalence of the SF
and ySF setups implies universality relations among correlation functions:
Suu’ dd’ d d
kr =ilg" =il =13% = 17", (24)

k== g =n = (25)

4. Results

Our preliminary results are based on the determination of Zr from eq. (22). We obtain the
continuum limit of the tensor lattice step scaling function Xt (u, a/L) performing global fits of the
data at different couplings and lattice spacings:

Zr (2%, a/2L
Sr(u.a/L) = % (26)
= orw) + pr(a) (4) @7)

with oor(u) and pr(u) parameterised by polynomials. Fig. 1 shows Xt as a function of (a/L)?,
and parametrized by the coupling u (in different colours) for the high energy region. The relative
continuum limit is illustrated in the top panel of Fig. 2. Our data (red circles) are in agreement
with perturbation theory at two loops (gray line) [1] and with the data obtained in a purely SF setup
(circles in black) [2, 17]. This demonstrates the continuum SF-ySF universality. The results at
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low energies are shown in the bottom panel of the same figure. We have extracted the anomalous
dimension v, relying on the formula:

Vo(u)

or(u) = exp { / dg %} . (28)
\/I;

In Fig. 3 we then finally show our preliminary results for ysr and ygrp, over the full range of
couplings available.
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Figure 1: The step scaling function Xt(u, a/L) in the high energy region

5. Conclusions

We have presented prelimirary results for the RG running of flavor non-singlet tensor operator
in Ny = 3 QCD, using the gauge configurations generated by the ALPHA collaboration [9]. The
data span, in a fully non-perturbative way, a range of energies of about three orders of magnitude,
going from hadronic to electro-weak scales. We obtained the anomalous dimension of the tensor
operator, aiming to complete the computation of the non-perturbative RG running of all dimension
3 bilinear operators.
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Figure 2: The continuum step scaling function or(u) at high energies (top panel) and at low energies
(bottom panel). The two energy regions correspond to different definitions of the running coupling: u = gé -

[10-12] and u = g2, [13, 14].
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Figure 3: The anomalous dimensions ysr (#) and ygr (u). The two schemes SF and GF correspond to
different definitions of the running coupling: u = g%, [10-12] and u = gZ . [13, 14].
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