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We present our preliminary results concerning the charged/neutral pion mass difference𝑀𝜋+−𝑀𝜋0

at order O(𝛼𝑒𝑚) in the QED interactions, and for 𝑀𝜋+ − 𝑀𝜋0 at order O
(
(𝑚𝑑 − 𝑚𝑢)2) in the

strong isospin-breaking term. The latter contribution provides a determination of the SU(2) chiral
perturbation theory low-energy constant ℓ7, whose present estimate is affected by a rather large
uncertainty. The disconnected contributions appearing in the diagrammatic expansion of 𝑀𝜋+ −
𝑀𝜋0 , being very noisy, are notoriously difficult to evaluate and have been neglected in our previous
calculations. By making use of twisted mass Lattice QCD simulations and adopting the RM123
method, we will show that taking profit from our recently proposed rotated twisted-mass (RTM)
scheme, tailored to improve the signal on these kinds of observables, it is possible to evaluate
the disconnected diagrams with good precision. For the QED induced pion mass difference,
we obtain, after performing the extrapolation towards the continuum and thermodynamic limit
and at the physical point, the preliminary value 𝑀𝜋+ − 𝑀𝜋0 = 4.622 (95) MeV, that is in good
agreement with the experimental result. For the determination of the low-energy constant ℓ7, our
result ℓ7 = 2.5 (1.4) × 10−3, which is limited so far to a single lattice spacing, is in agreement and
improves phenomenological estimates.
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1. Introduction

In the last decade, the precision achieved in the computation of several observables relevant
for flavour physics by lattice QCD has reached a level where electromagnetic and strong isospin-
breaking (IB) effects can no longer be neglected [1]. Among the many phenomenologically relevant
observables for which the calculation of IB effects are important, in this presentation we are con-
cerned with the calculation of the charged/neutral pion mass difference 𝑀𝜋+ − 𝑀𝜋0 , at leading
order in the electromagnetic interactions (O (𝛼𝑒𝑚)), and at order O((𝑚𝑑 − 𝑚𝑢)2) in the QCD IB.
The latter, which is subdominant with respect to the leading QED contribution of O(𝛼𝑒𝑚), turns
out to be important for the evaluation of the SU(2) low-energy costant (LEC) ℓ7, which param-
eterizes strong IB effects in the chiral perturbation theory (ChPT) Lagrangian at next-to-leading
order (NLO), and whose uncertainty is currently larger than 50% [2, 3]. The computation of ℓ7

can be performed also using an alternative method, in the following denoted as the "matrix element
method", in which ℓ7 is determined from the coupling of the neutral pion 𝜋0 to the isoscalar operator
𝑃0 =

(
𝑢̄𝛾5𝑢 + 𝑑𝛾5𝑑

)
/
√

2, and which is presented here as well and compared with the "meson mass
method".

Our strategy is based on the RM123 approach [4, 5] in which the lattice path-integral is expanded
in powers of the small parameters 𝛼𝑒𝑚 and 𝑚𝑑 − 𝑚𝑢, with 𝛼𝑒𝑚 ∼ (𝑚𝑑 − 𝑚𝑢)/Λ𝑄𝐶𝐷 ∼ O(10−2).
This approach allows to express the expectation value of any given observable in QCD+QED as a
power series in 𝛼𝑒𝑚 and 𝑚𝑑 − 𝑚𝑢 whose coefficients are related to correlation functions evaluated
in the isospin symmetric theory. We perform the diagrammatic expansion of the relevant corre-
lation functions using a recently proposed scheme for twisted-mass (TM) regularization of lattice
QCD, the rotated twisted-mass (RTM) scheme [6], which has been shown to be convenient for
lattice calculations of IB effects, especially within the RM123 approach. In particular, the quark
disconnected diagrams which appear in the diagrammatic expansion of the pion mass splitting at
both O(𝛼𝑒𝑚) and O((𝑚𝑑 −𝑚𝑢)2), as well as the disconnected diagram contributing to the coupling
of the neutral pion 𝜋0 to the isoscalar operator 𝑃0 at order O(𝑚𝑑 − 𝑚𝑢), which are notoriously
very noisy in standard TM, are affected by much smaller statistical errors if evaluated in the RTM
scheme [6].

The calculation of the charged/neutral pion mass difference at O(𝛼𝑒𝑚) has been performed
using the pure QCD isosymmetric gauge ensembles generated by the Extended Twisted Mass
Collaboration (ETMC) with 𝑁 𝑓 = 2 + 1 + 1 dynamical quarks [7–9]. After extrapolating to the
physical pion mass and to the continuum and infinite volume limit, our preliminary result is:

𝑀𝜋+ − 𝑀𝜋0 = 4.622 (64)𝑠𝑡𝑎𝑡. (70)𝑠𝑦𝑠𝑡. MeV, [PDG : 4.5936(5) MeV] . (1)

Concerning instead the determination of 𝑀𝜋+ − 𝑀𝜋0 at O((𝑚𝑑 − 𝑚𝑢)2), and the determination of
⟨0|𝑃0 |𝜋0⟩ at O(𝑚𝑑 − 𝑚𝑢), we made use of the 𝑁 𝑓 = 2 + 1 + 1 gauge configurations produced with
Wilson-clover TM fermions by the ETMC [10, 11]. For this pilot study, we limited our simulations
to a single value of the lattice spacing 𝑎 ≃ 0.095 fm and to a single pion mass 𝑀𝜋 ≃ 260 MeV. Our
final estimate of the value of ℓ7, which has been also presented in Ref. [3], is

ℓ7 = 2.5(1.3)𝑠𝑡𝑎𝑡. (0.5)𝑠𝑦𝑠𝑡. × 10−3 = 2.5(1.4) × 10−3 , (2)
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2. Evaluation of the LEC ℓ7

According to the analysis of Refs. [3, 12, 13], the value of the LEC ℓ7 can be determined
using two different methods, that we denote as the mass and the matrix element methods. The first
relies on the fact that ℓ7 parametrizes the charged/neutral pion mass difference induced by QCD IB
through

ℓ7 = 2
(𝑀𝜋+ − 𝑀𝜋0)𝑄𝐶𝐷

(𝑚𝑢 − 𝑚𝑑)2 ·
𝑚2

ℓ
𝑓 2
𝜋

𝑀3
𝜋

, (mass method) (3)

where (𝑀𝜋+ −𝑀𝜋0)𝑄𝐶𝐷 indicates only the pure QCD contribution to the pion mass difference, 𝑚ℓ

is the light quark mass, 𝑓𝜋 the pion decay constant, and 𝑀𝜋 is the pion mass in isosymmetric QCD.

In the matrix element method, instead, one exploits the fact that for 𝑚𝑢 ≠ 𝑚𝑑 , the neutral pion
has a non vanishing iso-singlet component, which is quantified by the matrix element

𝑍𝑃0𝜋0 ≡ ⟨0|𝑃0 |𝜋0⟩ = 1
√

2
⟨0|

(
𝑢̄𝛾5𝑢 + 𝑑𝛾5𝑑

)
|𝜋0⟩ . (4)

The value of 𝑍𝑃0𝜋0 at O(𝑚𝑑 − 𝑚𝑢) is then proportional to ℓ7, which in turn can be determined
through the relation [3]

ℓ7 = − 𝑍𝑃0𝜋0

𝑚𝑢 − 𝑚𝑑

·
𝑓𝜋𝑚

2
ℓ

𝑀4
𝜋

, (matrix element method) , (5)

Within the RM123 approach, both 𝑍𝑃0𝜋0 and (𝑀𝜋+ − 𝑀𝜋0)𝑄𝐶𝐷 are computed treating the IB
term in the QCD action, which is proportional to the mass difference Δ𝑚 = (𝑚𝑑 −𝑚𝑢)/2, as a small
perturbation. We perform the RM123 expansion in the RTM scheme, in which the Lagrangian of
the light doublet 𝜓 ′

ℓ
= (𝑢′, 𝑑 ′), is given by [6]

L𝑅𝑇𝑀 (𝜓 ′
ℓ) = 𝜓̄

′
ℓ (𝑥)

[
𝛾𝜇∇̃𝜇 − 𝑖𝛾5𝜏3𝑊 (𝑚𝑐𝑟 ) + 𝑚ℓ

]
𝜓 ′
ℓ (𝑥) + Δ𝑚L𝐼𝐵 (𝑥) , (6)

where ∇̃𝜇 is the lattice symmetric covariant derivative, while the critical Wilson term 𝑊 (𝑚𝑐𝑟 ),
which includes the critical mass, and the IB term L𝐼𝐵, are given by

𝑊 (𝑚𝑐𝑟 ) = −𝑎 𝑟
2
∇𝜇∇∗

𝜇 + 𝑚𝑐𝑟 (𝑟) , L𝐼𝐵 (𝑥) = 𝜓̄ ′
ℓ (𝑥)𝜏1𝜓

′
ℓ (𝑥) . (7)

In the RTM scheme, the IB term L𝐼𝐵, being proportional to 𝜏1, is flavour-changing w.r.t. the quark
fields 𝑢′, 𝑑 ′ which are regularized in Eq. (6) with opposite values of the Wilson parameter 𝑟 = ±1,
and are related to the physical up and down quark fields 𝑢, 𝑑 through the rotation(

𝑢

𝑑

)
=

1
√

2

(
1 1
−1 1

) (
𝑢′

𝑑 ′

)
, (8)
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The mass difference (𝑀𝜋+ −𝑀𝜋0)𝑄𝐶𝐷 and the matrix element ⟨0|𝑃0 |𝜋0⟩, can be extracted respec-
tively from the physical correlators𝐶𝜋+𝜋+ (𝑡) −𝐶𝜋0𝜋0 (𝑡) and𝐶𝑃0𝜋0 (𝑡) (𝐶𝐴𝐵 (𝑡) = ⟨0|𝐴(𝑡)𝐵†(0) |0⟩),
that in term of the rotated fields of the RTM basis are given by

𝐶𝜋+𝜋+ (𝑡) − 𝐶𝜋0𝜋0 (𝑡) = −2𝐶𝜋′+𝜋′− (𝑡) , 𝐶𝑃0𝜋0 (𝑡) = − 1
√

2
[𝐶𝑃′0𝜋′+ (𝑡) + 𝐶𝑃′0𝜋′− (𝑡)] , (9)

where 𝜋′− = 𝑢̄′𝛾5𝑑
′, 𝜋′+ = 𝑑 ′𝛾5𝑢

′, 𝑃′0 =
[
𝑢̄′𝛾5𝑢

′ + 𝑑 ′𝛾5𝑑
′] /√2.

In turn, the RM123 expansion of the correlators appearing in the r.h.s. of Eq. (9), respectively
at second and first order in Δ𝑚, and obtained using the RTM Lagrangian Eq. (6), is given by (see [6]
for a detailed derivation)

𝐶𝜋+𝜋+ (𝑡) − 𝐶𝜋0𝜋0 (𝑡) = −2𝐶𝜋′+𝜋′− (𝑡)

= −2
(
𝑍𝑆

𝑍𝑃

)2
(Δ𝑚)2

[
︸          ︷︷          ︸

𝐶𝑐𝑜𝑛𝑛.
𝑀𝑀

(𝑡)

− ︸                     ︷︷                     ︸
𝐶𝑑𝑖𝑠𝑐.

𝑀𝑀
(𝑡)

]
(10)

𝐶𝑃0𝜋0 (𝑡) = − 1
√

2
(𝐶𝑃′0𝜋′+ (𝑡) + 𝐶𝑃′0𝜋′− (𝑡))

= −2
𝑍𝑆

𝑍𝑃

Δ𝑚

[
︸          ︷︷          ︸

𝐶𝑐𝑜𝑛𝑛.
𝑀𝐸𝑀

(𝑡)

− ︸                     ︷︷                     ︸
𝐶𝑑𝑖𝑠𝑐.

𝑀𝐸𝑀
(𝑡)

]
(11)

where the black lines represent the isosymmetric light quark propagators with Wilson parameter
𝑟 = ±1, as indicated on each quark line, black vertices denote the insertion of 𝛾5, and red ver-
tices denote the insertion of the identity matrix corresponding to the perturbation L𝐼𝐵. Finally, in
Eqs. (10) and (11) we included the renormalization constant (RC) of the operator L𝐼𝐵 and of the
mass difference 𝑚𝑑 −𝑚𝑢 = 2Δ𝑚 which, in our twisted mass formulation, are given respectively by
𝑍𝑆 and 𝑍−1

𝑃
.

From the correlator𝐶𝜋+𝜋+ (𝑡)−𝐶𝜋0𝜋0 (𝑡), the pion mass difference (𝑀𝜋+−𝑀𝜋0)𝑄𝐶𝐷 at O(Δ𝑚2)
can be computed using (see e.g. Ref. [3])
𝐶𝜋+𝜋+ (𝑡) − 𝐶𝜋0𝜋0 (𝑡)

𝐶
isoQCD
𝜋𝜋 (𝑡)

= const. + (𝑀𝜋+ − 𝑀𝜋0)𝑄𝐶𝐷 · (𝑇/2 − 𝑡) · tanh [𝑀𝜋 (𝑇/2 − 𝑡)] + . . . , (12)

where the dots represent subleading exponentials, 𝑇 is the lattice time extent, and 𝑀𝜋 is the ground
state mass extracted from the isosymmetric pion correlator 𝐶 isoQCD

𝜋𝜋 , represented by the single
connected diagram without any mass insertion, and computed with opposite values of the Wilson
parameter 𝑟 . Similarly, the matrix element ⟨0|𝑃0 |𝜋0⟩ at O(Δ𝑚), can be evaluated using

𝐶𝑃0𝜋0 (𝑡)
𝐶

isoQCD
𝜋𝜋 (𝑡)

=
𝑍𝑃0𝜋0

𝑍𝜋𝜋

+ . . . , (13)

where 𝑍𝜋𝜋 ≡ ⟨𝜋 |𝑃†
𝜋 |0⟩ is the overlap between the isoQCD pion state and the interpolating source

𝑃𝜋 , and the dots represent again subleading exponentials.
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Figure 1: Comparison between the connected and disconnected diagrams appearing in the mass method
(Left plot) and in the matrix element method (Right plot).

Ensemble 𝑚̂ℓ 𝑓𝜋 𝑀̂𝜋 𝑍𝑃/𝑍𝑆
cA211.30.32 0.0030 0.06674 (15) 0.12530 (16) 0.726 (3)

Table 1: List of the input parameters used for the determination of ℓ7 on the cA211.30.32 ensemble.

2.1 Numerical results for ℓ7

For this exploratory study of ℓ7 we limited the simulations to a single ensemble (cA211.30.32),
generated by the ETMC with Wilson-clover TM fermions. In Tab. 1 we collected the values of the
input parameters that have been used for the determination of ℓ7. Relying on Eqs. (3) and (5), we
have built the following estimators to extract ℓ7 from the diagrams in Eqs. (10) and (11):

ℓ̄7(𝑡) =
(
𝑍𝑆

𝑍𝑃

)2
·
𝑓 2
𝜋𝑚̂

2
ℓ

𝑀̂3
𝜋

· 𝜕𝑡

[
𝐶𝑐𝑜𝑛𝑛.
𝑀𝑀

(𝑡) − 𝐶𝑑𝑖𝑠𝑐.
𝑀𝑀

(𝑡)
𝐶

isoQCD
𝜋𝜋 (𝑡)

]
(mass method) , (14)

ℓ̄7(𝑡) = −
(
𝑍𝑆

𝑍𝑃

)
·
𝑓𝜋𝑚̂

2
ℓ

𝑀̂4
𝜋

· 𝑍̂𝜋𝜋 ·
[
𝐶𝑐𝑜𝑛𝑛.
𝑀𝐸𝑀

(𝑡) − 𝐶𝑑𝑖𝑠𝑐.
𝑀𝐸𝑀

(𝑡)
𝐶

isoQCD
𝜋𝜋 (𝑡)

]
(matrix element method) , (15)

where 𝑍̂𝜋𝜋 = 𝑓𝜋 𝑀̂𝜋 sinh 𝑀̂𝜋/2𝑚̂ℓ , and the operator −𝜕𝑡 corresponds to the evaluation of the
so-called effective slope defined as

𝛿𝑚𝑒 𝑓 𝑓 (𝑡) ≡ −𝜕𝑡
𝛿𝐶 (𝑡)
𝐶 (𝑡) =

(
𝛿𝐶 (𝑡)
𝐶 (𝑡) − 𝛿𝐶 (𝑡−1)

𝐶 (𝑡−1)

)
( 𝑇2 − 𝑡) tanh (𝑀 ( 𝑇2 − 𝑡)) − ( 𝑇2 − 𝑡 + 1) tanh (𝑀 ( 𝑇2 − 𝑡 + 1))

, (16)

where in the mass method 𝐶 (𝑡) = 𝐶
isoQCD
𝜋𝜋 , 𝛿𝐶 (𝑡) = 𝐶𝑐𝑜𝑛𝑛.

𝑀𝑀
(𝑡) − 𝐶𝑑𝑖𝑠𝑐.

𝑀𝑀
(𝑡). The estimators tend

to ℓ7 in the large time limit 𝑡/𝑎 ≫ 1. In the panel of Fig. 1 we show our determination of the
diagrams𝐶𝑐𝑜𝑛𝑛.

𝑀𝑀
(𝑡) and𝐶𝑑𝑖𝑠𝑐.

𝑀𝑀
(𝑡) normalized over the isosymmetric pion correlator, along with our

determination of 𝐶𝑐𝑜𝑛𝑛.
𝑀𝐸𝑀

(𝑡) and 𝐶𝑑𝑖𝑠𝑐.
𝑀𝐸𝑀

(𝑡). As it can be seen, the signal of ℓ7 comes in both cases
from a delicate cancellation between connected and disconnected contributions, which makes this
calculation a non-trivial task given that a very good precision on both diagrams is needed in order to
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Figure 2: Determination of ℓ7 on the cA211.30.32 ensemble using both the mass method and the matrix
element method. The two bands correspond to the result of a constant fit in the time interval [5, 13].

obtain a good signal-to-noise ratio in the difference. In this respect the use of the RTM is essential
to improve the signal. In Fig. 2, we show instead the estimators of Eqs. (14) and (15). The matrix
element method shows smaller statistical errors w.r.t. the mass method, and both estimators are
consistent in the plateaux region. In both cases the signal disappears into noise at 𝑡 ∼ 15, and ℓ7

can be extracted through a costant fit at smaller times only. We fitted both estimators in the time
interval [5, 13] and obtained in this way

ℓ7 = 3.5 (2.0) × 10−3 (MM) , ℓ7 = 2.3 (1.0) × 10−3 (MEM) . (17)

Even if our analysis is limited to a single value of the lattice spacing, the difference between the two
determinations in Eq. (17) can be used as a first (likely conservative) estimate of the systematic error
associated to the missing continuum extrapolation, given that they are affected by different O(𝑎2)
lattice artifacts. Moreover, the systematic associated to the missing chiral extrapolation 𝑚ℓ → 0
is expected to be small as compared to our statistical error, given that in ChPT the presence of a
non-zero 𝑚ℓ corresponds to a NNLO correction to Eqs. (3) and (5). Making use of Eqs. (38)-(43)
of Ref. [11] to combine the two determinations, we get

ℓ7 = 2.5 (1.3)𝑠𝑡𝑎𝑡. (0.5)𝑠𝑦𝑠𝑡. × 10−3 = 2.5 (1.4) × 10−3 , (18)

which is in agreement but significantly improves the phenomenological estimate of Ref. [2] (7 (4) ×
10−3), and the determination of the RBC/UKQCD Collaboration [14] (6.5 (3.8) × 10−3).

3. Pion mass difference at O(𝛼𝑒𝑚)

The (UV finite) difference between charged and neutral pion correlators at order O(𝛼𝑒𝑚), is
obtained in the RTM scheme (see [6] for more details on this point) from the double insertion in
the isospin symmetric pion correlator of the iso-triplet component of the electromagnetic current

𝐽𝑖𝑏𝜇 (𝑥) = Δ𝑞𝜓̄ ′
ℓ (𝑥)𝜏1𝛾𝜇𝜓

′
ℓ (𝑥) , (19)
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where Δ𝑞 = (𝑞𝑢 − 𝑞𝑑)/2, which, in the RTM basis, induces a mixing between the 𝑢′ and 𝑑 ′ quarks.
Performing the corresponding Wick contractions, one gets that the difference between charged and
neutral pion correlators at O(𝛼𝑒𝑚) can be expressed in the RTM scheme as (see again [6] for a
derivation)

𝐶𝜋+𝜋+ (𝑡) − 𝐶𝜋0𝜋0 (𝑡) = −2𝐶𝜋′+𝜋′− (𝑡) = −2𝑒2(Δ𝑞)2𝑍2
𝐴

[
︸          ︷︷          ︸

𝛿𝐶̄𝑒𝑥𝑐ℎ.
𝜋 (𝑡)

− ︸                  ︷︷                  ︸
𝛿𝐶̄𝑑𝑖𝑠𝑐.

𝜋 (𝑡)

]
,

(20)

where the red vertices represent the insertion of 𝐽𝑖𝑏𝜇 , and we showed again explicitly the sign of
the Wilson parameter on each quark line, which gets always flipped at the e.m. vertex where the
𝑢′ quark turns into a 𝑑 ′ quark and viceversa. In the previous expression 𝑍𝐴 is the RC of the axial
current which in our TM setup renormalizes the local current 𝐽𝑖𝑏𝜇 . Instead, at order O(𝑚𝑑 − 𝑚𝑢),
𝐶𝜋′+𝜋′− (𝑡) = 0 since a single insertion of L𝐼𝐵 cannot convert a 𝜋′+ into a 𝜋′−. This is expected
since pion correlators are symmetric with respect to the exchange between up and down quarks.
From Eq. (20), it follows that the pion mass difference at O(𝛼𝑒𝑚) is given in the RTM scheme by

𝑀𝜋+ − 𝑀𝜋0 = 2𝑒2(Δ𝑞)2𝑍2
𝐴𝜕𝑡

𝛿𝐶̄𝑒𝑥𝑐ℎ.
𝜋 (𝑡) − 𝛿𝐶̄𝑑𝑖𝑠𝑐.

𝜋 (𝑡)
𝐶

isoQCD
𝜋𝜋 (𝑡)

, (21)

where the operator −𝜕𝑡 is defined as in Eq. (16) with 𝛿𝐶 (𝑡) = 𝛿𝐶̄𝑒𝑥𝑐ℎ.
𝜋 (𝑡) −𝛿𝐶̄𝑑𝑖𝑠𝑐.

𝜋 (𝑡). To cope with
the infrared divergence of the photon propagator (wiggly lines in Eq. (20)), we adopt the 𝑄𝐸𝐷𝐿

regularization and set 𝐴𝜇 (𝑘0, ®𝑘 = 0) = 0 for all 𝑘0 [5].

3.1 Numerical results for 𝑀𝜋+ − 𝑀𝜋0 at O(𝛼𝑒𝑚)

For this study, we made use of the first set of 𝑁 𝑓 = 2 + 1 + 1 ensembles of Wilson
TM fermions generated by the ETMC. The ensembles correspond to pion masses in the range
𝑀𝜋 ∈ [200 MeV, 500 MeV] and lattice spacings from 𝑎 ∼ 0.088 fm down to 𝑎 ∼ 0.062 fm.
Detailed informations on the ensembles are provided in Ref. [9]. For the RC 𝑍𝐴 appearing in
Eqs. (20) and (21), we made use of the more precise determination obtained from the method 𝑀2

of Ref. [9]. Moreover, we only considered the subset of the ETMC ensembles corresponding to
𝑀𝜋𝐿 ≥ 3.8 to limit the presence of QCD exponential finite size effects (FSEs). To improve the
precision on the disconnected diagram of Eq. (20), we devised a new numerical technique, tailored
for quark disconnected diagrams, in which the photon propagator is evaluated exactly by working
in momentum space, and therefore the statistical noise coming from its stochastic representation is
absent. The method, which will be illustrated in details in a forthcoming publication, combined
with the benefit of the RTM scheme, allowed us to obtain an uncertainty of order O(1%) on the
value of the disconnected diagram.

We found it useful to consider the dimensionless ratio

𝑅𝜋 ≡
𝑀2

𝜋+ − 𝑀2
𝜋0

𝑓 2
𝜋

≈ 2𝑀𝜋

𝑓 2
𝜋

(𝑀𝜋+ − 𝑀𝜋0) , (22)
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a
2

( M
2 π
+
−
M

2 π
0

)

(L/a)−3

unsubtracted

universal FSE subtracted

Figure 3: The (squared) pion mass difference in the RTM scheme, for the ensembles of type A40.XX, which
share a common value of the pion mass (𝑀𝜋 ≃ 320 MeV) and of the lattice spacing, but differ in the lattice
extent 𝐿. The dashed line is the result of a linear fit in (𝐿/𝑎)−3.

after applying to both 𝑓𝜋 and 𝑀𝜋 , the SU(2) ChPT finite volume corrections at NNLO + resum-
mation, i.e. the Colangelo-Dürr-Haefeli (CDH) formulae [15]. The latter depend on the knowledge
of the four, scale dependent, SU(2) LECs ℓ̄1, ℓ̄2, ℓ̄3, ℓ̄4, and in this work we adopt the same choice
made in Ref. [10] for the values of the LECs.

The presence of the QED interactions, generate sizable FSEs in 𝑀𝜋+ − 𝑀𝜋0 which are power-
law in the spatial lattice extent 𝐿. The leading and next-to-leading FSEs of order O(1/𝐿) and
O((1/𝐿)2) are however universal [16, 17], and in the case of the 𝑄𝐸𝐷𝐿 used in this work, and for
a pseudo-scalar meson of electric charge 𝑄 and mass 𝑀𝑃𝑆 , are given by

𝑀2
𝑃𝑆 (𝐿) − 𝑀

2
𝑃𝑆 (∞) = −𝑄2𝛼𝑒𝑚

𝜅

𝐿2 (2 + 𝑀𝑃𝑆𝐿) , (23)

where 𝜅 = 2.837297. These corrections can be subtracted exactly from our lattice data leaving
residual structure-dependent (SD) O((1/𝐿)3) FSEs, as shown in Fig. 3 for the ensembles of type
𝐴40.𝑋𝑋 , which only differ in the spatial extent. In Fig. 4 we show instead our determination of the
𝑅𝜋 ratio, before and after removal of the universal FSEs, and for all ensembles considered in this
work, as a function of the dimensionless parameter 𝜉𝜋 =

𝑀2
𝜋

(4𝜋 𝑓𝜋 )2 .

Inspired by the ChPT analysis of Ref. [18], and by the non-relativistic expansion of Ref. [17],
we extrapolated towards the physical pion mass and towards the continuum and infinite volume
limit, employing the following Ansatz for the ratio 𝑅𝜋

𝑅sub.
𝜋 (𝜉𝜋 , 𝑎, 𝐿) = 4𝑒2𝐶 − 3𝑒2𝜉𝜋 log 𝜉𝜋 + 𝑒2𝐴1𝜉𝜋 + 𝑒2𝐴2𝜉

2
𝜋 + 𝑒2𝐷𝑎2

+ 𝑒2𝐷𝑚𝜉𝜋𝑎
2 + 𝑒2𝐾

(4𝜋)2𝜉𝜋

3𝑀𝜋𝐿
3 ⟨𝑟2⟩𝜋+ + 𝑒2𝐹𝑎

𝜉𝜋

𝑀𝜋

𝑎2

𝐿3 , (24)

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
5
5

Lattice determination of 𝑀𝜋+ − 𝑀𝜋0 at O(𝛼𝑒𝑚) and O((𝑚𝑑 − 𝑚𝑢)2). G. Gagliardi

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

R
π

ξπ =M 2
π/(4πfπ)

2

β = 1.90, L/a = 24

β = 1.90, L/a = 32

β = 1.90, L/a = 40

β = 1.90, L/a = 48

β = 1.95, L/a = 24

β = 1.95, L/a = 32

β = 2.10, L/a = 48

Figure 4: Our estimate of the ratio 𝑅𝜋 as a function of 𝜉𝜋 , as determined in the RTM scheme and including the
contribution of the disconnected diagram. The filled markers represent the data without any FSE correction,
while the empty ones represent the result of the subtraction of the universal FSEs using Eq. (23).
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Figure 5: Result of the combined continuum/thermodynamic and physical point extrapolation as obtained
setting 𝐴2 = 𝐷 = 𝐷𝑚 = 𝐹𝑎 = 0. The data points correspond to our lattice data after the subtraction of the
universal and of the SD FSEs, while the orange band sbows the statistical uncertainty after the continuum
and infinite volume extrapolation. The black point corresponds to our determination at the physical point.

where 𝑅sub.
𝜋 is the 𝑅𝜋 ratio after the subtraction of the universal FSEs, and ⟨𝑟2⟩𝜋+ = (0.672 ±

0.008 fm)2 is the squared pion charge radius. In the previous expression 𝐶, 𝐴1, 𝐴2, 𝐷, 𝐷𝑚, 𝐾 and
𝐹𝑎 are free fitting parameters. In particular 𝐶 and 𝐴1 parameterize the ChPT expansion for 𝑅𝜋 up
to NLO, 𝐴2 is an effective LEC at NNLO, while 𝐷 and 𝐷𝑚 take into account discretization effects.
Finally, 𝐾 takes into account deviations from the non-relativistic prediction of Ref. [17] (𝐾 = 1)
for the SD FSEs, while the term proportional to 𝑎2/𝐿3 corresponds to an expected FSE due to an
heavy intermediate state of mass ∝ 1/𝑎 [19].
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In Fig. 5, we show the result of the extrapolation obtained using the Ansatz of Eq. (24), setting
𝐴2 = 𝐷 = 𝐷𝑚 = 𝐹𝑎 = 0, which represents our preferred fit. The quantity Δ𝑀𝜋 , which at the
physical point gives the pion mass splitting, is defined as Δ𝑀𝜋 ≡ 𝑅𝜋 · ( 𝑓 phys.

𝜋 )2/(2𝑀phys.
𝜋 ), with

𝑀
phys.
𝜋 = 134.977 MeV and 𝑓

phys.
𝜋 = 130.4 MeV. Notice the remarkable smallness of O(𝑎2) lattice

artifacts in our data, within accuracy. To estimate systematic errors, we performed a total of 24 fits,
differing on whether the 𝐴2, the 𝐷, and the 𝐷𝑚 fit parameters have been included or not, and on
the form of the SD FVEs for which we either include 𝐾 or 𝐹𝑎 as a free fit parameter (in this last
case setting 𝐾 = 1), or introduce an additional 1/𝐿4 term on top of the non-relativistic prediction
𝐾 = 1, 𝐹𝑎 = 0. The fit results have been combined using the Akaike Information Criterium (AIC), in
which, to each fit, it is assigned a weight 𝑤𝑖 ∝ exp

{
−(𝜒2 + 2𝑛𝑝𝑎𝑟𝑠)/2

}
. Mean values and standard

errors have been then computed making use of Eqs. (38)-(43) from Ref. [10]. Our preliminary
result for the pion mass splitting is

𝑀𝜋+ − 𝑀𝜋0 = 4.622 (64)𝑠𝑡𝑎𝑡. (70)𝑠𝑦𝑠𝑡. MeV = 4.622 (95) MeV , (25)

which agrees very well with the experimental determination [𝑀𝜋+ − 𝑀𝜋0]exp. = 4.5936 (5) MeV,
and with the result of a recent lattice determination [20] 𝑀𝜋+ − 𝑀𝜋0 = 4.534(42) (43) MeV, in
which the disconnected contribution has been computed as well.

4. Conclusions

We have presented an analysis of the O(𝛼𝑒𝑚) and O((𝑚𝑑 − 𝑚𝑢)2) mass splitting 𝑀𝜋+ − 𝑀𝜋0

between the charged and neutral pion. We showed that a good accuracy in the determination of
the disconnected diagrams can be achieved by working in the rotated twisted mass (RTM) scheme,
which have been shown to be particularly convenient for the evaluation of some QCD+QED mesonic
observables based on the RM123 approach. By evaluating the strong IB contribution to 𝑀𝜋+ −𝑀𝜋0

at O((𝑚𝑑 − 𝑚𝑢)2) and the coupling 𝑍𝑃0𝜋0 of the neutral pion to the isoscalar operator at order
O(𝑚𝑑 − 𝑚𝑢), we showed that it is possible to cleanly extract the value of the ChPT SU(2) LEC
ℓ7. Our results for ℓ7 (2) is in agreement with previous estimates while improving significantly the
precision. For the O(𝛼𝑒𝑚) mass splitting 𝑀𝜋+ − 𝑀𝜋0 , after extrapolating to the continuum and
infinite volume limit, and at the physical point, our preliminary estimate (1) has a total uncertainty
of ∼ 2% and agrees with the experimental result.
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