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We study a gauge-invariant renormalization scheme (GIRS) for composite operators, regularized
on the lattice, by extending the coordinate space (X-space) scheme proposed some years ago.
In this scheme, Green’s functions of products of gauge-invariant operators located at different
spacetime points are considered. Due to the gauge-invariant nature of GIRS, gauge fixing is not
needed in the lattice simulations. Also, when operator mixing occurs, the gauge-variant operators
(BRST variations and operators which vanish by the equations of motion) can be safely excluded
from the renormalization process.
We propose a number of variants of GIRS, including integration over time slices of the operator
insertion point in a Green’s function, which may lead to reduced statistical noise in lattice sim-
ulations. We employ these variants in the renormalization of fermion bilinear operators and the
study of mixing between the gluon and quark energy-momentum tensor operators. We extract
the one-loop conversion factors relating the nonperturbative renormalization factors in different
versions of GIRS to the reference scheme of MS.
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1. Introduction

Renormalization of composite operators is essential when studying matrix elements and cor-
relation functions in Hadronic Physics. It relates bare quantities of the theory to physical ones.
In order to extract nonperturbative physical results from numerical simulations on the lattice, the
construction of an appropriate nonperturbative renormalization scheme is needed. For comparing
lattice results to experimental data, the reference scheme of MS is typically employed. Since MS
is defined in dimensional regularization using continuum perturbation theory, a direct nonpertur-
bative renormalization of lattice correlation functions to the MS scheme is not feasible. However,
an indirect way of taking nonperturbative results in MS can be achieved by using an appropriate
intermediate scheme, which is applicable in both continuum and lattice: The renormalization fac-
tors which convert lattice data to the intermediate scheme can be calculated nonperturbatively on
the lattice, while the conversion from the intermediate to the MS scheme can be implemented by
calculating regularization-independent conversion factors in dimensional regularization up to some
perturbative order. Some popular intermediate schemes are the RI′/MOM and the Schrödinger
functional schemes. In our study, we focus on the construction of an alternative intermediate
scheme, referred to as gauge-invariant renormalization scheme (GIRS), which is more appropriate
when operator mixing occurs.

GIRS involves correlation functions of gauge-invariant operators in coordinate space, e.g.,

〈O1(G)O2(H)〉, (G ≠ H). (1)

The operators O1(G), O2(H) are located at different spacetime points in order to avoid contact
singularities. The main idea of this prescription is to impose regularization-independent conditions
on such correlation functions in the chiral limit, similar to the RI′/MOM scheme, e.g.,

/O1 /O2 〈O1(G)O2(H)〉
���
G−H=Ī

= 〈O1(G)O2(H)〉tree
���
G−H=Ī

, (2)

where Ī is the renormalization 4-vector scale [Ī ≠ (0, 0, 0, 0)]. Older investigations of such
coordinate-space renormalization prescriptions can be found, e.g., in Refs. [1–5]. This work is a
continuation of the previous studies, including a number of extensions in order to deal properly with
the error in nonperturbative calculations and, most importantly, with operator mixing.

There is a number of advantages of this scheme which make easier its implementation in the
lattice simulations:
1. Due to the gauge-independent nature of GIRS, gauge fixing is not needed; thus, the problem of
Gribov copies in lattice simulations is avoided within GIRS.
2. Gauge-variant (GV) operators have vanishing correlation functions in GIRS; thus, when mixing
occurs, all GV operators [Becchi-Rouet-Stora-Tyutin (BRST) variations and operators which vanish
by the equations of motion], which can mix with gauge-invariant operators, can be safely excluded
from the renormalization procedure, leading to a reduced set of mixing operators.
3. Contact terms are automatically excluded by the definition of the GIRS correlation functions.
4. Perturbative matching of GIRS and MS scheme is possible at high perturbative order (in most
cases). Given that GIRS is defined in the massless limit, well-known techniques for calculating
Feynman diagrams to very high perturbative order can be used (even in the presence of mixing).
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On the other hand, there are some practical issues and challenges of GIRS:
1. Computations in GIRS, at a given order in perturbation theory, involve diagrams with one more
loop.
2. When mixing occurs, the calculation of some three-point functions may be unavoidable, which
are typically more noisy in simulations.
3. The main challenge is to find a renormalization window: 0 � | Ī | � Λ−1

QCD (where 0 is the
lattice spacing and ΛQCD is the QCD physical scale), which must be wide enough in order to keep
lattice artifacts under control and at the same time to ensure reliability of continuum perturbation
theory. Improvements on the size of the window are possible via subtractions of leading-order
lattice artifacts [1], step-scaling techniques [4], or averaging over operator positions (see, e.g., [5]).

A promising extension of GIRS, which is employed in the present study, is to integrate, or sum
on the lattice, over time slices of the operator insertion points, while setting the time separations
equal to a nonzero scale, e.g.1,

/O1 /O2

∫
33®G 〈O1(®G, C)O2(®0, 0)〉

���
C=C̄
=

∫
33®G 〈O1(®G, C)O2(®0, 0)〉tree

���
C=C̄
, (3)

where C̄ ≠ 0. We call this variant t-GIRS.Given the summations over time slices, the nonperturbative
data in lattice simulations are expected to show small statistical errors.

In what follows, we consider two applications of GIRS: in the multiplicative renormalization
of fermion bilinear operators (Sec. 2) and in the study of mixing of the QCD traceless gluonic
and fermionic energy-momentum tensor (EMT) operators (Sec. 3). A long write-up of our work,
together with an extended list of references, can be found in Ref. [6].

2. Application of GIRS to the fermion bilinears

We first present our one-loop calculation for the renormalization of local fermion bilinear
operators in GIRS. This computation served mostly as a prototype for the more demanding com-
putation of the energy-momentum tensor renormalization, which follows. We consider all possible
types of fermion bilinears which have definite behavior under Lorentz and parity transformations:
O- (G) = k̄(G)-k(G), where - = 1 (scalar), W5 (psedoscalar), W` (vector), W5W` (axial vector), and
f`a ≡ [W`, Wa]/2 (tensor). One may consider both flavor singlet ( 1

# 5

∑
5 k̄ 5 -k 5 ) and nonsinglet

operators (k̄ 5 -k 5 ′, 5 ≠ 5 ′). For our one-loop computation, the flavor content is irrelevant and
thus, we have omitted flavor indices on k, k̄. Also, in order to avoid the mixing of flavor singlet
scalar operator with the unit operator, we consider normal-ordered operators.

We calculate two-point Green’s functions of the form of Eq. 1 with O1 = O- and O2 = O. ,
where -,. denote products of Dirac matrices (see definition of - above). - can, in principle, differ
from . . Note that in order to obtain a nonzero result the flavor of the fermion (antifermion) field
in O- must coincide with the flavor of antifermion (fermion) field in O. . The Feynman diagrams
contributing to these two-point functions, up to O(62), are shown in Fig. 1.

1Without loss of generality, we set G = (®G, C) and H = (®0, 0).
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X X Y
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Figure 1: Feynman diagrams contributing to 〈O- (G)O. (H)〉 to order O(60) (first diagram from the left) and
O(62) (three remaining diagrams). A wavy (solid) line represents gluons (quarks). A cross denotes insertion
of a fermion bilinear operator.

The resulting expressions for all the nonvanishing MS-renormalized correlation functions of
fermion bilinears are given below:

〈OMS
1 (G) O

MS
1 (0)〉=

#2

c4 (G2)3

[
1 +

62
MS

��

16c2

(
2 + 6 ln( ¯̀2G2) + 12W� − 12 ln(2)

) ]
+ O(64

MS
), (4)

〈OMS
W5
(G) OMS

W5
(0)〉=−〈OMS

1 (G)O
MS
1 (0)〉 − 16 2HV

#2

c4 (G2)3
62

MS
��

16c2 + O(64
MS
), (5)

〈OMS
W`
(G) OMS

Wa
(0)〉=−

#2 ℓ
[1]
`a

c4 (G2)3

(
1 + 3

62
MS

��

16c2

)
+ O(64

MS
), (6)

〈OMS
W5W`
(G) OMS

W5Wa
(0)〉=〈OMS

W`
(G)OMS

Wa
(0)〉 + 8 2HV

#2 ℓ
[1]
`a

c4 (G2)3
62

MS
��

16c2 + O(64
MS
), (7)

〈OMS
f`a
(G) OMS

fdf
(0)〉=−

#2 ℓ
[2]
`adf

c4 (G2)3

[
1 +

62
MS

��

16c2

(
6 − 2 ln( ¯̀2G2) − 4W� + 4 ln(2)

) ]
+ O(64

MS
),(8)

where
ℓ
[1]
`a ≡ X`a−2 G` Ga

G2 , ℓ [2]`adf ≡ (X`d Xaf−X`f Xad)−2 (X`d Ga GfG2 −X`f
Ga Gd

G2 −Xad
G` Gf

G2 +Xaf
G` Gd

G2 ),
�� ≡ (#2

2 − 1)/(2#2), 2HV = 0 (1) for the naive dimensional regularization (t’Hooft-Veltman)
prescription of W5 and the scale ¯̀ comes from the renormalization of coupling constant in 3
dimensions: 6' = (

√
4W�/(4c) ¯̀) (3−4)/2

/−1
6 6.

By applying the condition of Eq. (3), we extract the regularization-independent conversion
factors between t-GIRS and MS: � t−GIRS,MS

O- ≡ /
DR,MS
O- //DR,t−GIRS

O- = /
L,MS
O- //

L,t−GIRS
O- , where

DR (L) denotes dimensional (lattice) regularization. The one-loop results for the nonvanishing
cases are:

�
t−GIRS,MS
O1

=1 +
62

MS
��

16c2

(
−1

2
+ 6 ln( ¯̀ C̄) + 6W�

)
+ O(64

MS
), (9)

�
t−GIRS,MS
OW5

=1 +
62

MS
��

16c2

(
−1

2
+ 6 ln( ¯̀ C̄) + 6W� + 8 2HV

)
+ O(64

MS
), (10)

�
t−GIRS,MS
OW8

=1 +
62

MS
��

16c2

(
3
2

)
+ O(64

MS
), (11)

�
t−GIRS,MS
OW5W8

=1 +
62

MS
��

16c2

(
3
2
+ 4 2HV

)
+ O(64

MS
), (12)

�
t−GIRS,MS
Of`a

=1 +
62

MS
��

16c2

(
25
6
− 2 ln( ¯̀ C̄) − 2W�

)
+ O(64

MS
). (13)
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3. Application of GIRS to the QCD traceless energy-momentum tensor

In this section, we present our one-loop calculation for the renormalization of QCD traceless
energy-momentum tensor (EMT) operators in GIRS. EMT is the conserved current associated with
the spacetime translational symmetry. It is decomposed into traceless and trace parts, gluonic
and fermionic components. The nucleon matrix elements of its traceless (gluonic and fermionic)
components enter the nucleon spin decomposition, and they are directly related to the gluon and
quark average momentum fraction of a nucleon state. While EMT is a finite quantity, the individual
components are not. In our study, we focus on the renormalization of each traceless part.

The traceless (gluonic and fermionic) EMT operators are defined as:

)
�

`a (G) = −2Tr[�d{` (G) �a }d (G)], )
�

`a (G) =
# 5∑
5 =1

k̄ 5 (G)W{`
←→
� a }k 5 (G), (14)

where ←→� ` is the symmetrized covariant derivative and {. . .} denotes the symmetrization over
Lorentz indices `, a and subtraction of the trace2. A difficulty in studying the renormalization of
these operators is that mixing is present; the two operators along with three gauge-variant operators
(two BRST variations and one operator vanishing by the equations of motion) [7]:

OBRST1 (G) =
4
U

Tr[m{`�a } (G)md�d (G) − 2̄(G)m{`�a }2(G)], (15)

OBRST2 (G) = − 4
U

Tr[�{` (G)ma }md�d (G) − m{` 2̄(G)�a }2(G)], (16)

OEOM(G) = 4Tr[�{` (G) X(/X�a } (G)], (17)

mix among themselves, as they have the same transformations under Euclidean rotational (or
hypercubic, on the lattice) symmetry. The three GV operators depend on ghost fields and gauge-
fixing terms, which are well-defined in perturbation theory, while their nonperturbative extensions
are not obvious; thus, a nonperturbative study of such terms by compact lattice simulations is
nontrivial. For a recent two-loop calculation of all mixing coefficients in dimensional regularization,
see our Ref. [8]. However, employing GIRS the GV operators are automatically excluded from the
renormalization process. Then, for the renormalization of the two remaining operators (the two
EMT operators), we need to construct a 2 × 2 mixing matrix:(

)
� '

`a

)
� '

`a

)
=

(
/�� /��

/�� /��

) (
)
�

`a

)
�

`a .

)
(18)

The calculation of all mixing matrix elements requires a total of four conditions involving
correlation functions of )�`a and )

�

`a . Three conditions can be obtained by considering two-point
functions between the two EMT operators:

〈)� GIRS
`a (G))� GIRS

df (H)〉
���
G−H=Ī

= 〈)�`a (G))
�

df (H)〉
tree���

G−H=Ī
, (19)

〈)� GIRS
`a (G))� GIRS

df (H)〉
���
G−H=Ī

= 〈)�`a (G))
�

df (H)〉
tree���

G−H=Ī
, (20)

〈)� GIRS
`a (G))� GIRS

df (H)〉
���
G−H=Ī

= 〈)�`a (G))
�

df (H)〉
tree���

G−H=Ī
= 0. (21)

2For the explicit definitions, see Ref.[6].
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Figure 2: Feynman diagrams contributing to 〈)�`a (G))
�

df (H)〉, to order O(60) (first diagram (upper left))
and O(62) (the remaining diagrams). Wavy (solid, dashed) lines represent gluons (quarks, ghosts). A
diamond denotes insertion of the gluon EMT operator.

A fourth condition can be obtained by considering three-point functions among an EMT operator
and two lower dimensional operators, e.g., two fermion bilinears 3:

〈OGIRS
- (G))� GIRS

`a (F)OGIRS
. (H)〉

��� G−F=Ī,
H−F=Ī′,
Ī≠Ī′

= 〈O- (G))
�

`a (F)O. (H)〉
tree��� G−F=Ī ,

H−F=Ī′,
Ī≠Ī′

= 0. (22)

For simplifying the perturbative calculation, we choose Ī′ = −Ī. Also, we employ the offdiagonal
(` ≠ a) elements of EMT and flavor nonsinglet fermion bilinears. Different extensions of our
calculation, including the diagonal components, are under investigation.

Similarly, we define renormalization conditions in t-GIRS. As an example, we employ two
vector bilinear operators; we choose the free Lorentz indices in such a way as to obtain a solvable
system of equations: ∫

33®G 〈)� t−GIRS
8 9 (®G, C))� t−GIRS

8 9 (®0, 0)〉|C=C̄ = tree, (8 ≠ 9) (23)∫
33®G 〈)� t−GIRS

8 9 (®G, C))� t−GIRS
8 9 (®0, 0)〉|C=C̄ = tree, (8 ≠ 9) (24)∫

33®G 〈)� t−GIRS
8 9 (®G, C))� t−GIRS

8 9 (®0, 0)〉|C=C̄ = tree, (8 ≠ 9) (25)∫
33®G 〈Ot−GIRS

W8
(®G, C))� t−GIRS

8 9 (®0, 0)Ot−GIRS
W 9

(−®G,−C)〉|C=C̄ = tree, (8 ≠ 9) (26)

where the abbreviation “tree” in the r.h.s. of each condition corresponds to the tree-level value of
the l.h.s.

The Feynman diagrams contributing to the two-point and three-point functions of the EMT
operators, up to O(62), are shown in Figs. (2,3,4,5,6). The resulting expressions for the nonvanish-
ing MS-renormalized two-point and three-point correlation functions of EMT operators are given
below, up to O(62

MS
). Results for the three-point functions with other fermion bilinears can be

found in our manuscript [6].

3Two-point functions between an EMT operator and one fermion bilinear operator vanish due to trace algebra or
charge conjugation symmetry.
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12Figure 3: Feynman diagrams contributing to 〈)�`a (G))

�

df (H)〉, to orderO(60) (first diagram (upper left)) and
O(62) (the remaining diagrams). Wavy (solid) lines represent gluons (quarks). A square denotes insertion
of the fermion EMT operator.
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Figure 4: Feynman diagrams contributing to 〈)�`a (G))
�

df (H)〉, to order O(62). There is no O(60) contri-
bution. Wavy (solid) lines represent gluons (quarks). A diamond (square) denotes insertion of the gluon
(fermion) EMT operator.

〈)� MS
`a (G))� MS

df (0)〉=
4#2�� B [1]`adf

c4(G2)4

[
1 −

62
MS

16c2
4
3

(
# 5

(1
6
+ ln( ¯̀2G2) + 2W� − 2 ln(2)

)
+5#2

3

)]
, (27)

〈)� MS
`a (G))� MS

df (0)〉=
#2# 5 B

[1]
`adf

c4(G2)4

[
1 −

62
MS

16c2
16��

3

(
− 59

48
+ ln( ¯̀2G2) + 2W� − 2 ln(2)

)]
(28)

〈)� MS
`a (G))� MS

df (0)〉=
#2# 5 B

[1]
`adf

c4(G2)4

[
62

MS
16c2

16��
3

(
− 1

6
+ ln( ¯̀2G2) + 2W� − 2 ln(2)

)]
, (29)

〈OMS
Wd
(G))� MS

`a (0)OMS
Wf
(−G)〉=

#2# 5

4c6(G2)5
62

MS
16c2

8��
3

[
B
[2]
`adf

(
− 1.701491 + ln( ¯̀2G2)

)
+ B [3]`adf

]
(30)

〈OMS
Wd
(G))� MS

`a (0)OMS
Wf
(−G)〉=

#2# 5

4c6(G2)5

[
B
[2]
`adf −

62
MS

16c2
8��

3

(
B
[2]
`adf

(
− 3.201491 + ln( ¯̀2G2)

)
+B [4]`adf

)]
, (31)

where
B
[1]
`adf = (X`dXaf + X`fXad) + 8 G`Ga GdGf

(G2)2
− 2 (X`d Ga GfG2 + X`f

Ga Gd

G2 + Xad
G` Gf

G2 + Xaf
G` Gd

G2 ),

B
[2]
`adf = 2 G`Ga

G2 Xdf − 8 G`Ga GdGf
(G2)2

+ (X`d Ga GfG2 + X`f
Ga Gd

G2 + Xad
G` Gf

G2 + Xaf
G` Gd

G2 ),

B
[3]
`adf =

1
2
G`Ga

G2 Xdf + 3
4 (X`dXaf + X`fXad) − (X`d

Ga Gf
G2 + X`f

Ga Gd

G2 + Xad
G` Gf

G2 + Xaf
G` Gd

G2 ),
B
[4]
`adf =

11
4
G`Ga

G2 Xdf + 9
8 (X`dXaf + X`fXad) − (X`d

Ga Gf
G2 + X`f

Ga Gd

G2 + Xad
G` Gf

G2 + Xaf
G` Gd

G2 ).
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Figure 5: Feynman diagrams contributing to 〈O- (G))
�

`a (F)O. (H)〉, to order O(60) (first diagram (upper
left)) and O(62) (the remaining diagrams). Wavy (solid) lines represent gluons (quarks). A square (cross)
denotes insertion of the fermion EMT (bilinear) operator. Diagrams having the arrows of the fermion lines
in counterclockwise direction must also be considered.

Figure 6: Feynman diagrams contributing to 〈O- (G))
�

`a (F)O. (H)〉, to order O(62). There is no O(60)
contribution. Wavy (solid) lines represent gluons (quarks). A diamond (cross) denotes insertion of the gluon
EMT (fermion bilinear) operator.

By applying the conditions of Eqs. (23 – 26), we extract the regularization-independent
conversion factors (which are now a 2 × 2 matrix) between t-GIRS and MS:

©«
�

t−GIRS,MS
��

�
t−GIRS,MS
��

�
t−GIRS,MS
��

�
t−GIRS,MS
��

ª®®¬ =
©«
/

DR,MS
��

/
DR,MS
��

/
DR,MS
��

/
DR,MS
��

ª®®¬ ·
©«
/

DR,t−GIRS
��

/
DR,t−GIRS
��

/
DR,t−GIRS
��

/
DR,t−GIRS
��

ª®®¬
−1

=
©«
/

L,MS
��

/
L,MS
��

/
L,MS
��

/
L,MS
��

ª®®¬ ·
©«
/

L,t−GIRS
��

/
L,t−GIRS
��

/
L,t−GIRS
��

/
L,t−GIRS
��

ª®®¬
−1

. (32)

The one-loop results are:

�
t−GIRS,MS
��

= 1 −
62

MS
16c2

[10
9
#2 + 0.236288# 5 +

4
3
# 5 ln( ¯̀ C̄)

]
+ O(64

MS
), (33)

�
t−GIRS,MS
��

= −
62

MS
16c2��

[
− 7.848365 − 16

3
ln( ¯̀ C̄)

]
+ O(64

MS
), (34)

�
t−GIRS,MS
��

= −
62

MS
16c2# 5

[
1.933961 − 4

3
ln( ¯̀ C̄)

]
+ O(64

MS
), (35)

�
t−GIRS,MS
��

= 1 −
62

MS
16c2��

[
− 2.777072 + 16

3
ln( ¯̀ C̄)

]
+ O(64

MS
). (36)
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4. Conclusions and future prospects

In this work, we have studied the application of GIRS and its variant, called t-GIRS, to the
renormalization of fermion bilinears and of traceless EMT operators. We have calculated the
one-loop conversion factors relating t-GIRS to the MS scheme. The corresponding application
of t-GIRS in lattice simulations is currently under investigation, including different extensions
in the renormalization conditions. We have also considered some further applications of GIRS
regarding the renormalization of supersymmetric operators on the lattice, such as the gluino-glue
operator [9] and the supercurrent (ongoing [10]). Finally, a natural continuation of our work is the
renormalization of the trace parts of EMT using t-GIRS, which has some further complications on
the lattice.
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