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Hamiltonian formulation of lattice gauge theories provides the natural framework for the purpose
of quantum simulation, an area of research that is growing with advances in quantum-computing
algorithms and hardware. It is therefore important to identify the most accurate, while compu-
tationally economic, Hamiltonian formulation(s) of lattice gauge theories along with necessary
truncation imposed on the Hilbert space of gauge bosons for any finite computing resources. We
report a study toward addressing this question in the case of non-Abelian lattice gauge theories
that require the imposition of non-Abelian Gauss’s laws on the Hilbert space.
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1. Introduction

In recent years, there has been a revived interest in the Hamiltonian formalism of gauge
theories [1] that provides the natural framework when one aims at utilizing quantum computing
technologies for the unsolved problems in QCD. From that motivation, the lattice gauge theory
community throughout the globe is becoming increasingly interested in this research direction.

Given the fact that useful quantum computer [2] is yet to arrive for universal computation, we
take the chance to study Hamiltonian simulation of gauge theories within the scope of classical
computation using the different reformulations of the same available in the literature [3]. The
motivation for this study is to see if one particular formulation or one particular choice of basis is
more efficient for the purpose of Hamiltonian simulation, keeping in mind the fact that Hamiltonian
analysis does call for imposing the Gauss’ law constraints on the Hilbert space in order to keep
the dynamics confined into the physical Hilbert space. For this study, instead of considering the
theory of QCD (SU(3) gauge theory in 3 + 1 dimensions), we consider a theory with the simplest
non-Abelian continuous gauge group, i.e. SU(2) defined on a 1 dimensional spatial lattice.

In this article, the different bases to work with the same theory are briefly introduced in section
2. In section 3, the computational complexities of the Hamiltonian simulation using different bases
or representations are analyzed and finally, the most efficient basis to work with is identified.

2. Hamiltonian Lattice Gauge theory: different choice of basis vectors

In this section, we briefly describe four different bases (see figure 1) available in the literature
to describe the Hilbert space Kogut-Susskind (KS) Hamiltonian for SU(2) [1], in 1 + 1 dimension,
along with the form of the Hamiltonian in each basis that produces an identical spectrum.

The KS Hamiltonian is given by,

� (KS) = �
(KS)
�
+ � (KS)

�
+ � (KS)

"
. (1)

Here, � (KS)
�

denotes interactions among the fermionic and gauge fields as given in

�
(KS)
�

=
1
20

∑
G

[
k†(G)*̂ (G)k(G + 1) + h.c.

]
, (2)

The mass and electric parts of the Hamiltonian are given by,

�
(KS)
�

=
620

2

∑
G

K̂ (G)2 , �
(KS)
"

= <
∑
G

(−1)Gk†(G)k(G). (3)

Here,6 is a coupling and< is the mass of the two-component staggered fermionic fields considered.
The electric field and the link operators act as the canonical conjugate variables of the theory and
satisfy the canonical commutation relation:

[�̂0
!/', �̂

1
!/'] = −8n

012 �̂2
!/' , [�̂0! , �̂1'] = 0 , [�̂0! , *̂] = )0*̂ , [�̂0', *̂] = *̂)0, (4)

where )0 = 1
2g
0, and g0 is the 0th Pauli matrix. The corresponding commutation relations for

fields with different site indices vanish.
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Figure 1: Different basis for KS Hamiltonian that produces an identical spectrum

The states in the physical Hilbert space are constrained as:

�̂0 (G) |Ψphys〉 = 0 ∀G with, �̂0 (G) = −�̂0! (G) + �̂0' (G − 1) + k†(G))0k(G). (5)

The strong coupling vacuum |0〉 is defined as the state that is annihilated by the electric part of the
Hamiltonian and also eigenstate for the mass part of the Hamiltonian with the minimum eigenvalue.
The strong coupling basis is built up by the action of the link operator on the strong coupling vacuum
state. A general state consisting of gauge and matter fields is only physical when it satisfies (5).

2.1 Angular momentum basis

Themost well known basis to describe SU(2) gauge theories is the angularmomentum basis that
acts as strong coupling eigenstates of the Kogut-Susskind Hamiltonian given in (1). The eigenstates
of the electric part of the Hamiltonian is given by the rigid rotor states [1] for each link characterized
by | 9 , <! , <'〉, where 9 counts the electric flux on the link and <!/<' are the left/right magnetic
quantum number for the angular momentum representation. The (anti)matter content of the theory
is represented by two component fermionic fields (in the fundamental representation of SU(2))
residing locally at each lattice site. The strong coupling basis states for the KS Hamiltonian are
thus given by,

|Φ〉 (G)(KS) = |�', <'〉
(G−1) ⊗ | 51, 52 (G)〉 ⊗ |�! , <!〉 (G) , (6)

for each site G. Here, 51 and 52 are the fermionic occupation number of the two components of the
(anti)matter field, k1 and k2, each taking values 0 and 1, corresponding to the absence and presence
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of (anti)matter. The gauge-link operator acting on the rigid rotor basis creates a state with modified
electric flux that comes with suitable coefficients [3] as per the angular momentum addition rules.

The physical Hilbert space, that satisfies (5) is explicitly constructed in the angular momentum
basis. Despite the fact that, for the non-Abelian gauge theories, there exists a set of mutually
non-commuting constraints, there exist certain states that solve all of the Gauss’ law constraints.
For angular momentum representation, such a state can be identified as a combination of angular
momentum states (and also matter field state, where a presence of a single matter field is equivalent
to angular momentum flux � = 1/2) at each site where the total angular momentum adds up to
zero following angular momentum addition rules. Such a local gauge-invariant state is thus a linear
combination of states as given in (6) with proper Clebsch Gordon coefficients. This construction is
discussed in detail in [3]. Note that, absence of a fermion at a site, or the presence of two fermions
at a site, is independent of any gauge flux and yield states in the physical Hilbert space.

2.2 Purely fermionic basis

As a characteristic for any one dimensional gauge theory, the KS Hamiltonian in (1) combined with
the Gauss’s law constraints on the Hilbert space, leaves no dynamical gauge degrees of freedom. For
a SU(2) gauge theory in 1+1 D with the open boundary condition (OBC), where the incoming flux
of the (right) electric field is set to a fixed value, the value of electric-field excitations throughout
the lattice gets fixed by the global fermionic distribution on the lattice. As a result, one can work
with a purely fermionic Hilbert space for 1 + 1 dimensional SU(2) gauge theory. This was first
discussed in [4] and is used in recent tensor-network simulations of the SU(2) LGT in [5].

As derived in [3], with the choice of pure gauge fixing1, the mass, interaction and electric parts
of the original KS Hamiltonian is obtained in the form:

�
(F)
"
= <

#−1∑
G=0
(−1)Gk†′ (G)k ′(G) , � (F)

�
=

1
20

#−2∑
G=0

[
k†
′ (G)k ′(G + 1) + h.c.

]
�
(F)
�

=
620

2

#−1∑
G=0

3∑
0=1

n00 +
G∑
H=0

k†
′ (H))0k ′(H)


2

, (7)

Note, the electric part of the purely fermionic Hamiltonian contains long-range interaction between
fermions. In the context of the Schwinger model, this same feature arises and has been utilized to
a great extent for the purpose of both classical and quantum simulation.

In this formulation, any explicit dependence on the gauge link and electric fields are eliminated
and any state can be written in terms of a complete fermionic occupation-number basis,

|Φ〉(KS,F) =
#−1∏
G=0
| 51, 52〉 (G) , (8)

where as before, 51 and 52 refer to the occupation number of the two components of the (anti)matter
field, k1 and k2, respectively, each taking values 0 or 1.

1consisting of the following gauge transformation: * (G) → * ′(G) =
[∏

H<G * (H)
]
* (G)

[∏
I<G+1* (I)

]†, and
choosing* ′ = I.
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2.3 Purely bosonic basis

One can obtain a purely fermionic theory only in 1+1 D, as in higher dimensions the number of
constraints at each lattice site is not sufficient to eliminate the gauge DOF in all spatial directions.
One could reversely consider eliminating the fermionic DOF with the use of Gauss’s laws, as
proposed in Ref. [6], to obtain a fully bosonic theory. This protocol works in all dimensions but
requires enlarging the gauge group to accommodate a sufficient number of constraints needed to
eliminate the fermions. One further needs to keep track of the fermionic statistics by encoding in
the purely bosonic interactions, the nontrivial signs associated with the anti-commuting nature of
the fermions [7].

The bosonized form of the SU(2) LGT in 1+1 D is derived in [3], following the procedure
outlined in Ref. [6] for general dimensions. For the SU(2) gauge theory in 1 + 1-dimension, the
extended theory has an extra U(1) symmetry, of which /2 is a subgroup that takes care of translating
fermionic statistics to hardcore bosons. The on-site Hilbert space is described in Figure. 1. The
physical Hilbert spaces of the SU(2) theory and the U(2) theory are isomorphic, meaning that
in the limit where the U(1) gauge link approaches unity, the Hamiltonian matrix elements in the
original theory is recovered from those in the extended theory. The extended Hamiltonian involves
nearest-link interactions but is otherwise local [6].

2.4 Loop-String-Hadron basis

An alternate reformulation of KS Hamiltonian formalism in terms of Schwinger bosons, known as
the prepotential formalism, has been developed over the past decade [8–16]. In a recent work [17],
the prepotential formalism of the SU(2) LGT has been made complete to construct the loop-string-
hadron (LSH) formalism to include staggered fermions, explicit Hamiltonian, and the associated
Hilbert space.

Exploiting the most important feature of the prepotential formalism, namely splitting a link
into its left and right parts, those are weaved together by one Abelian Gauss law (AGL) defined on
the link, the LSH formalism describes the manifestly gauge invariant operators and states at each
site, denoting the local snap-shots of the gauge invariant Wilson loops and string states weaved by
the AGL across the links. This particular description for the Hilbert space for SU(2) gauge theory
on a 1-D spatial lattice is spanned by local basis vectors characterized by the following integer
valued quantum numbers:

|Φ〉(!(� ) =
∏
G

|=;, =8 , =>〉 (G) ; where, 0 ≤ =; < ∞ & 0 ≤ =8 , => ≤ 1 ∀G. (9)

The local LSH quantum numbers at the neighboring lattice sites must satisfy the AGL, that in the
LSH formulation reads as,

=̂; (G) + =̂> (G) (1 − =̂8 (G)) = =̂; (G + 1) + =̂8 (G + 1) (1 − =̂> (G + 1)). (10)

Note that, the states |Φ〉(!(� ) are already the physical states of the theorywithout explicitly imposing
the complicated SU(2) Gauss law constraints.

The LSH Hamiltonian, as given in [3, 17] contains electric, mass and interaction terms ex-
pressed in terms of the operators =̂;, =̂8 , =̂>, those are the number operators corresponding to the
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LSH quantum numbers for each state define at each G. Additionally, the interaction Hamiltonian
contains the string creation-annihilation operators, which are composite operators constructed out
of the ladder operators in the loop-string-hadron basis and are presented in detail in [3, 17]. The
LSH Hamiltonian, albeit looks very much different from the KS Hamiltonian, produces an identical
spectrum and exhibits identical cut-off effects to establish itself as a fully reliable reformulation of
the original formalism without any loss of generality.

3. Choosing the most efficient basis: study of the cost of simulation in different basis

Hamiltonian simulation, in general, involves four steps, namely: 1) state preparation or building
up the Hilbert space, 2) construction of the Hamiltonian, 3) Finding the spectrum of the Hamiltonian
and 4) computing the dynamics of the system. The cost of performing each of the steps for each of
the formalism are different and are analyzed in detail in [3]. Here, we briefly quote the conclusion
of this analysis performed in [3].

Angular momentum representation:

This basis is mathematically well understood and describes the most general case of SU(2)
gauge theory. However, the most expensive part of using this basis is to impose the Gauss’s law
constraints on the angular momentum states throughout the lattice in order to build up the physical
Hilbert space of the theory. In this process, the physical states come up as a linear combination of
angular momentum basis states. With increasing lattice size, the number of terms in such linear
combinations grows exponentially [3]. The cost of the next step, i.e. forming the Hamiltonian
matrix is hugely affected by the fact just stated. To appreciate that, one may think about the
algorithm one uses while forming the Hamiltonian: a physical state is considered and marked as the
initial state |8〉, the Hamiltonian acts on it to yield another state, a scan through all the states of the
physical Hilbert space would identify this state to be the state | 9〉, so that the (8, 9) element of the
Hamiltonian matrix is fixed. Now, given the fact all of the physical states are a linear combination
of a large number of angular momentum states, that grows exponentially, also increases the cost of
forming the Hamiltonian exponentially. Once the Hamiltonian is formed, it is quite sparse in nature
and the sparsity also increases with system size. One can use standard and most efficient exact
diagonalization techniques to find the spectrum and dynamics of the system. One must note that
the dimension of the Hilbert space depends on the cut-off on the angular momentum Casimir that
we choose and so is the cost of Hamiltonian simulation. However, for a lattice with open boundary
condition, there exists a saturated value of cut-off (equal to twice the system size, for a system with
zero incoming flux) beyond which the Hilbert space does not grow and hence the bosonic Hilbert
space remains finite-dimensional.

Purely fermionic representation:

The most complicated part of Hamiltonian gauge theory simulation, namely the Hilbert space
formation is trivial in this formulation and one gets all possible fermionic states on the systemwithout
any significant cost as there is no Gauss law constraint for this gauge fixing condition. Unlike the
angular momentum basis, the fermionic states are one sparse and hence the cost of Hamiltonian
formation is exponentially cheaper than that of the angular momentum basis. Moreover, being only
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fermionic, no cut-off needs to be specified for this formulation. However, although being extremely
efficient, this formulation is not valid beyond one spatial dimension and open boundary condition,
and hence one cannot think of utilizing this for the ultimate goal of simulating gauge theories in
real 3 + 1 dimensions.

Purely bosonic formulation:

This particular formulation involves some extra steps of removing the fermionic degrees of
freedom at the cost of extending the gauge symmetry with one extra U(1) gauge degrees of freedom.
This extra U(1) gauge symmetry, exhibits extra cut off (ΛU(1)) dependence on this formulation
and only for ΛU(1) → ∞ the original Kogut-Susskind Hamiltonian is retrieved. One can then
choose the angular momentum basis for the SU(2) part of the gauge group and the computational
complexity is exactly the same as that for the angular momentum basis described above.

LSH formulation:

The Hilbert space for this formulation is described by a hybrid boson-fermion basis, defined
at each lattice site that is free from any SU(2) gauge redundancy. Hence, there is no extra cost of
solving the Gauss law constraints. However, solving for the on-link Abelian constraint (10) makes
the Hilbert space construction more expensive compared to the purely fermionic formalism, but
it is still costs less than the same with angular momentum representation as shown in Figure. 2.
The physical LSH basis states, being 1-sparse, significantly reduces the cost of the Hamiltonian
construction as compared with the angular momentum representation. Once the Hamiltonian is
constructed it turns out to be exactly the same as in the angular momentum representation and one
can perform any calculation, like finding the spectrum and studying the static as well as dynamics
of the theory as demonstrated in [3].

It is also possible to identify different global symmetry sectors of the theory for which the
Hamiltonian is block diagonal as it is really convenient to perform calculations for each block of
the Hamiltonian matrix. In terms of the LSH Hilbert space, identifying these global symmetry
sectors are very much intuitive. For example, forSU(2) gauge theory in 1+1 dimension, one can
define the following global charges: & = (=8 (G) + => (G)) ≡ a# , @ =

∑
G (=> (G) − => (G)). where

& ∈ (0, 2#) denotes the total number of fermions on the lattice and @ ∈ (0, #) denotes the electric
flux on the last link of the lattice of length N. Each values of them defines a superselection sector
of the theory. The SU(2) gauge theory Hamiltonian also exhibits charge conjugation symmetries,
that allow one to identify the global charge sector & with the 2# −& sector that exhibits the same
spectrum and dynamics.

4. Summary and Discussions

In this work, we have performed a comparative analysis of the different Hamiltonian formu-
lations available in the literature that describes a SU(2) gauge theory in 1+1 dimension from the
perspective of Hamiltonian simulation using a classical computer. Albeit the exponential growth of
the Hilbert space, it is possible to identify the global symmetry sectors of the theory and perform
calculations both for statics and dynamics of the theory within each superselection sector. We
have demonstrated that one particular choice of basis, namely the purely fermionic basis costs the
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least for Hamiltonian simulation as shown in Figure. 2. However, this basis works only in one
spatial dimension and open boundary condition. The convenient yet general framework suitable for
Hamiltonian simulation for non-Abelian gauge theories is the LSH framework as demonstrated in
Figure. 2.

A similar study in higher dimension as well as for other relevant gauge theories, such as
SU(3) gauge theory would be more useful. Works in these directions are in progress and will be
reported in near future. It is also important to note that the exact diagonalization technique for
classical Hamiltonian simulation is extremely limited due to the exponential growth of the Hilbert
space. However, there exist recent Hamiltonian simulation techniques such as using tensor network
ansatz [18–20]. The present study also sheds light on choosing a suitable framework for the tensor
network constructed for a gauge theory, that also leads to obtain a quantum algorithm. Following
this direction, follow-up of the present work aims to construct quantum algorithms and estimate
resources for simulating non-Abelian gauge theories on an analog or a digital quantum computer.
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Figure 2: (a) The asymptotic cost of each step and (b) cumulative cost of all the steps of given classical
algorithms for Hamiltonian simulation of the KS SU(2) LGT in 1+1 D with the fermionic formulation (F),
LSH formulation, and the angular-momentum basis in the physical sector (J), as a function of the lattice size
N for large N. Step (I) refers to Hilbert-space construction, step (II) refers to Hamiltonian generation and step
(III) denote observable computation. The step (I) for the fermionic formulation is of O(1).
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