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Lattice QCD simulations directly at physical masses of dynamical light, strange and charm quarks
are highly desirable especially to remove systematic errors due to chiral extrapolations. However
such simulations are still challenging. We discuss the adaption of efficient algorithms, like multi-
grid methods or higher order integrators, within the molecular dynamic steps of the Hybrid Monte
Carlo algorithm, that are enabling simulations of a new set of gauge ensembles by the Extended
Twisted Mass collaboration (ETMC). We present the status of the on-going ETMC simulation
effort that aims to enabling studies of finite size and discretization effects. We work within the
twisted mass discretization which is free of odd-discretization effects at maximal twist and present
our tuning procedure.
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Figure 1: Overview of the current 𝑁 𝑓 = 2 + 1 + 1 twisted mass clover-improved ensembles. The left panel
shows the ensembles according to their lattice extent in units of the pion mass, while the right panel shows
them according to the pion mass. The dark blue circles show the non-physical point ensembles, the light
blue already existing physical point ensembles and the red on-going simulations at the physical point.

1. Introduction

During the past decade, progress has been made enabling simulations of twisted mass fermions
at physical quark masses at several lattice spacings less than 0.1 fm and volumes as large as 9 fm
[1, 2]. These ensembles drive the rich physics program of the Extended Twisted Mass collaboration
(ETMC), which ranges from measurements of quark masses, precision measurements of CKM-
matrix elements, hadron spectroscopy and scattering, nucleon structure, semi-leptonic decays and
many other ETMC projects.

In this presentation, we overview the progress on the algorithmic and computational side that
made the generation of these ensembles possible. More specifically, we discuss how to fix the
parameters of the simulations, which needs a careful fine tuning procedure in order to achieve O(𝑎)
improvement, how to optimize the multigrid solver DDalphaAMG [3, 4] and how to improve the
force computation during the Hybrid Monte Carlo simulations. The use of a three level multigrid
procedure comes with some limitation for current HPC machines equipped with CPUs that limit
scalability. Furthermore, we present selected results using the generated statistics and discuss
autocorrelations using the physical point ensembles.

2. Status of Extended Twisted Mass Collaboration 𝑁 𝑓 = 2 + 1 + 1 Simulations

Within ETMC, twisted mass clover-improved ensembles has beed generated at four different
lattice spacings, namely 𝑎 ∼ 0.093 fm, 𝑎 ∼ 0.08 fm, 𝑎 ∼ 0.069 fm and 𝑎 ∼ 0.057 fm, referred to
A-, B-, C- and D-lattices, respectively. We target pion mass ranges between 250 MeV and 135 MeV,
with the exception of the A-lattices where ensembles with up to 350 MeV are generated. Ensembles
with physical pion masses, also denoted as physical point ensembles, are generated at the B-, C-
and D-lattice spacings. As depicted in Fig. 1, all physical point ensembles fulfil 𝑚𝜋 · 𝐿 > 3.6. A
larger volume ensemble is generated at the B-lattice spacing with 𝑚𝜋 · 𝐿 = 5.3, to be used for finite
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ensemble 𝛽 𝑐SW 𝜅 𝑉/𝑎4 𝑎𝜇ℓ 𝑎𝜇𝜎 𝑎𝜇𝛿

cA211.53.24 1.726 1.74 0.1400645 243 × 48 0.00530 0.1408 0.1521
cA211.40.24 243 × 48 0.00400
cA211.30.32 323 × 64 0.00300
cA211.12.48 0.1400650 483 × 96 0.00120
cB211.25.24 1.778 1.69 0.1394267 243 × 48 0.00250 0.1246864 0.131052
cB211.25.32 323 × 64 0.00250
cB211.25.48 483 × 96 0.00250
cB211.14.64 643 × 128 0.00140
cB211.072.64 0.1394265 643 × 128 0.00072
cB211.072.96 963 × 192 0.00072
cC211.20.48 1.836 1.6452 0.13875285 483 × 96 0.00060 0.106586 0.107146
cC211.125.64 643 × 128 0.00125
cC211.06.80 803 × 160 0.00060
cD211.17.64 1.900 1.6112 0.137972174 643 × 128 0.00170 0.087911 0.086224
cD211.054.96 963 × 192 0.00054

Table 1: Simulation parameters of the 𝑁 𝑓 = 2 + 1 + 1 twisted mass clover-imporved ensembles.

volume studies. We target statistics exceeding 3000 MDUs for all ensembles. Parameters are listed
in Table 1 and can be also be found in Ref. [1].

2.1 Twisted mass fermion action

The 𝑁 𝑓 = 2+ 1+ 1 ensembles are generated using the Iwasaki gauge action for the pure gauge,
the 𝑁 𝑓 = 2 mass-degenerate twisted mass fermion action with a clover term for the light quarks
and the 𝑁 𝑓 = 1 + 1 non-degenerate twisted mass fermion action for the strange and charm quarks.
The non-degenerated twisted mass operator is given in the heavy doublet flavor space by

𝐷 (𝜅, 𝑐𝑠𝑤 , 𝜇, 𝜖) = 𝐷𝑊 (𝜅, 𝑐𝑠𝑤 ) ⊗ 1 + 𝑖𝜇𝜎𝛾5 ⊗ 𝜏3 − 𝜇𝛿 ⊗ 𝜏1 =

[
𝐷𝑊 + 𝑖𝛾5𝜇𝜎 −𝜇𝛿

−𝜇𝛿 𝐷𝑊 − 𝑖𝛾5𝜇𝜎

]
(1)

with 𝐷𝑊 the clover improved Wilson Dirac operator, 𝜅 the Wilson hopping parameter, 𝑐𝑆𝑊 the
clover parameter and 𝜇𝜎 and 𝜇𝛿 the 1+1 twisted mass parameters [5]. Note that taking 𝜇𝛿 = 0 the
mass-degenerate twisted mass operator in flavor space is recovered. Twisted mass fermions have
several advantages. Lattice artefacts of odd power in 𝑎 can be removed if the Partially Conserved
Axial Current (PCAC) mass is tuned to zero, i.e. 𝑚𝑃𝐶𝐴𝐶 (𝜅) −→ 0 [6]. This can be done by fine
tuning the bare Wilson quark mass parameter𝑚 = 0.5/𝜅−4 to its critical mass𝑚𝑐𝑟𝑖𝑡 = 0.5/𝜅𝑐𝑟𝑖𝑡−4.
Moreover, in the case of a finite twisted mass value, the operator 𝐷 is non-singular. For the squared
operator one gets in fact

𝐷†𝐷 = 𝐷
†
𝑊
𝐷𝑊 + 𝜇2 , (2)

with 𝜇 playing the role of an infra-red cut-off for the eigenvalues of 𝐷. While this guarantees
convergence of iterative methods, such as the conjugate gradient solver, the twisted mass term
breaks isospin symmetry. This results in a mass-splitting within the pion triplet. The neutral pion
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mass is shifted with respect to the charged pion mass, which is given in next to leading order (NLO)
chiral perturbation theory [7] by

𝑎2(𝑚2
𝜋0 − 𝑚2

𝜋±) = −𝑐0 · 𝑎2 . (3)

This cut-off effect, if large, can give neutral pion mass of zero at finite quark masses and trigger a
phase transition. For values of the neutral pion mass close to zero, tuning the PCAC mass to zero
becomes notoriously difficult and such Monte Carlo simulations of twisted mass fermions become
impossible. This prevented simulation at physical pion masses without a clover term.

Including a clover term, reduces lattice artefacts which decreases the mass gap between the
charged and neutral pion given in Eq. (3) to such an extent as to make simulations at values of
𝑎 ∼ 0.09 possible [9]. For our setup we use 1-loop tadpole boosted perturbation theory [8] to fix
the value of the 𝑐𝑆𝑊 parameter, given by

𝑐𝑆𝑊 = 1 + 0.113(3) 6
𝛽〈𝑃〉 (4)

with 〈𝑃〉 the plaquette.

2.2 Parameter tuning

In order to simulate 𝑁 𝑓 = 2 + 1 + 1 twisted mass fermion ensembles at the physical point, we
need to set the bare parameters for our action. The complete set of parameters is

{𝛽, 𝑐𝑆𝑊 , 𝜅, 𝜇ℓ , 𝜇𝜎 , 𝜇𝛿} . (5)

Using an estimated initial guess, we can pre-select the value of the gauge coupling 𝛽 that fixes 𝑐𝑆𝑊
via Eq. (4). The bare-mass parameters of the twisted mass action that are left, namely

{𝜅, 𝜇ℓ , 𝜇𝜎 , 𝜇𝛿} (6)

require careful fine tuning in order to guarantee O(𝑎) improvement. This can be done by tuning
the bare Wilson quark mass 𝜅 towards its critical value by requiring

𝑍𝐴𝑚𝑃𝐶𝐴𝐶 (𝜅, 𝜇ℓ , 𝜇𝜎 , 𝜇𝛿)
𝜇ℓ

< 0.1, (7)

with 𝑍𝐴 the axial renormalization factor. Note that the PCAC mass depends also on the heavy quark
parameters 𝜇𝜎 and 𝜇𝛿 of the non-degenerated twisted mass operator. Due to this dependence on
the heavy quark pair, charm and strange, we utilise Osterwalder Seiler (OS) fermions [31] to set the
strange and charm quark mass. We then match the non-unitary setup of the OS-fermions with the
unitary setup with non-degenerate twisted mass fermions. This results in three tuning conditions
for the heavy quark parameters. The first two are given by

𝐶1 =
𝜇𝑂𝑆𝑐

𝜇𝑂𝑆𝑠
= 11.8 and 𝐶2 =

𝑚𝑂𝑆
𝐷𝑠

𝑓𝑂𝑆
𝐷𝑠

= 7.9 (8)

that set the strange and charm quark mass parameters in the OS sector. The full matching between
OS and non-degenerate twisted fermions is finally done using the kaon mass 𝑚𝐾 by requiring

𝑚𝑂𝑆𝐾 (𝜇𝑂𝑆𝑠 ) ≡ 𝑚𝑁𝐷
𝐾 (𝜇𝜎 , 𝜇𝛿), (9)

which basically utilizes the renormalization factor ratio 𝑍𝑃/𝑍𝑆 and yields to the determination of
𝜇𝜎 and 𝜇𝛿 via the relation 𝜇𝑂𝑆𝑐,𝑠 =

1
𝑍𝑃

(
𝜇𝜎 ± 𝑍𝑃

𝑍𝑆
𝜇𝛿

)
.
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Figure 2: The tuning procedure employed for the D-lattice spacings using reweighting on two tuning
ensembles. We depict the dependence of the PCAC mass on the light twisted mass parameter 𝑎𝜇ℓ (left), on
the Wilson bare quark mass 𝑎�̄� (middle) the heavy quark parameter 𝜇𝜎 (right).

3. Parameter tuning

For the tuning of the twisted mass parameters, we iterate the following steps: i) tune 𝜅 at
constant {𝜇ℓ , 𝜇𝜎 , 𝜇𝛿}; ii) change 𝜇ℓ and retune 𝜅; iii) tune {𝜇𝜎 , 𝜇𝜎} and retune 𝜅; iv) reiterate
until stability is reached. This procedure requires for the tuning of the A-, B- and C- ensembles to
generate for each steps roughly two Markov chains with around 500 MDU, see [2] for a detailed
discussion for the case of the B-lattice spacing. For the D-lattice we modify the tuning procedure
by making use of reweighting for all parameters {𝜅, 𝜇ℓ , 𝜇𝜎 , 𝜇𝛿} [10–12]. This reduces the number
of ensembles needed for the tuning, namely to one per iteration circle.

With the help of reweighting by changing the bare parameters by 1% to 5% we could give an
estimate of the first derivatives of 𝑎𝑚𝑃𝐶𝐴𝐶 (𝜅, 𝜇ℓ , 𝜇𝜎 , 𝜇𝛿). This quantity was estimated in the case
of the tuning procedure of the A-, B- and C-lattice spacings via generation of several ensembles.

For the tuning of the D-lattice spacing we generate two different ensembles at twisted mass
values 𝑎𝜇 = 0.002 and 𝑎𝜇 = 0.00125 and volumes of 𝑉 = 323 × 64 and 𝑉 = 483 × 96, respectively.
We employ the fit Ansatz

𝑓 (𝑚, 𝜇ℓ , 𝜇ℓ) = 𝑐0 + 𝑐1𝑚 + 𝑐2𝜇ℓ + 𝑐3𝜇ℓ (10)

with bare quark mass 𝑚 = 1/2/𝜅 − 4. We find for the fit coefficients 𝑐0 = 0.51(2), 𝑐1 = 1.37(6),
𝑐2 = 0.04(2) and 𝑐3 = 0.012(4). The resulting uncorrelated fit with 𝜒2 = 11.2 is shown in Fig. 2,
where we include all available data points generated by reweighting resulting in 19 degrees of
freedom. The critical mass parameter at physical light quark mass of 𝑎𝜇 = 0.00054 is given by
𝜅
𝐷, (0)
𝑐𝑟𝑖𝑡

= 0.137973465. Based on this estimate we generate 500 MDUs at our the physical point
with 𝑎𝜇 = 0.00054, leading to a slightly negative PCAC mass of −4.4(7)10−5. This does meet our
criterion and thus we proceed to retune 𝜅 using our estimate for the slope 𝜕 𝑓 /𝜕𝑚 = 1.37 such that
our final estimate for the critical Wilson mass parameter is given by 𝜅𝑐𝑟𝑖𝑡 |𝛽=1.9 = 0.137972174 .

With this tuning procedure, that it is also outlined in ref. [2] for the B-lattice spacing, we were
able to successfully tune towards critical Wilson mass, achieving O(𝑎)-improvement. Indeed as
seen in Fig. 3, all ensembles fulfil the condition of eq. 7 with 𝑚𝑃𝐶𝐴𝐶/𝜇 < 4% or better.
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Figure 3: The history of the PCAC mass for the physical point ensembles is plotted in units of molecular
dynamics (MDUs) showing from top to bottom the cB211.072.64, cB211.072.96, cC211.060.80 and the two
replicas of cD211.060.80 ensembles.

4. Simulation setup

For the generation of the ensembles listed in Table 1, we use our open source software suite
tmLQCD [14–16], which implements an optimised Hybrid Monte Carlo algorithm enabling the
use of twisted mass operators of Eq. (1) and improved gauge action with rectangular loops. For
the molecular dynamics, we are using, for the mass-degenerated light quark doublet, even-odd
Hasenbusch mass preconditioning with masses {𝜌0 = 𝜇ℓ , 𝜌1, . . . , 𝜌𝑁 }, while for the heavy quark
doublet, even-odd rational approximation of the square root of the non-degenerate twisted mass
operator �̂�2

𝑁𝐷
= 𝐷𝑁𝐷,𝑒𝑜𝐷

†
𝑁𝐷,𝑒𝑜

is used [13]. Thus, the Boltzmann weight of our setup is given
by

𝑊 (𝑈) = 𝑍−1exp

{
− 𝛽𝑆𝑖𝑤𝑎 (𝑈) + Tr ln{𝑊𝑜𝑜 (𝜌0, 𝜇𝜎)} −

𝑁∑︁
𝑗=1

𝜙†

[
𝑞𝑖

�̂�2
𝑁𝐷

+ 𝜇𝑖

]
𝜙

−
𝑁−1∏
𝑗=1

𝜂
†
𝑗
(1 + Δ2𝜌 𝑗−1, 𝑗 (�̂�2 + 𝜌2

𝑗−1)
−1𝜂 𝑗 − 𝜂

†
𝑁
(�̂�2 + 𝜌2

𝑁 )−1𝜂𝑁

}
.

For a more detailed discussion see Appendix A of Ref. [1]. Our simulation code tmLQCD provides
currently a link to the algebraic multigrid solver library DDalphaAMG, which provides routines
for the twisted mass operator [4] and for the non-degenerated twisted mass operator [18] that can
speed-up the smallest shifts within the rational approximation. Additionally, we have employed
the mixed-precision linear solver provided by the software package QPhiX [19–23], which can be
utilized for the larger mass shifts, where the algebraic multigrid solver becomes less effective.
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Figure 4: The requirements of a three level multigrid method within HMC simulations are shown.The
left panel shows the scalability for three different volumes on SuperMUC-NG. The middle panel shows the
memory requirements and the right panel illustrates the reversibility violation as a function of the solver
residual.

4.1 Application of HMC with multigrid solver

For all simulations of the physical point ensembles, we take advantage of the highly reduced
computational costs of using multigrid solvers within the force calculation, see e.g. [4]. The use of
multigrid solver within the integration of Hamiltons molecular dynamics requires some additional
care and comes with some limitations. Namely, the scalability on HPC systems, such as SuperMUC-
NG, is limited by the volume of the coarsest grid within the multigrid procedure. This limits the
strong scaling window, as depicted in Fig. 4, breaking down for a three-level MG method for a
lattice of size 𝑉 = 643 × 128 at around 80 Skylake nodes, and for a lattice of size 𝑉 = 963 × 192
at around 420 Skylake nodes. This results in a roughly scaling of the upper bound of the strong
scaling window by 𝐿3 or 𝑉3/4 and limits the maximal effective parallelisation of our HMC.

The lower bound of the working window using a multigrid solver is determined by memory
requirements. In fact prolongation and restriction operators required for projecting iteration vectors
from level to level and building up the coarser operators, need allocation of O(20) full vectors, a
number which scales with the size of the volume. On SuperMUC-NG with 192 GB RAM per node
this introduces a hard limit for the minimal parallelisation, given by about 16 nodes for lattice size
of 𝑉 = 643 × 128 and increasing to 80 nodes for a volume of 𝑉 = 963 × 192.

The usage of a multigrid solver not only limits the scalability window, but can also compro-
mise the correctness of the HMC sampling. By reusing and updating the coarse grid operators
and the corresponding prolongation and restriction operators from previous integration steps, the
reversibility criterium, which is needed to fulfil detailed balance, is violated. In order to assess the
magnitude of the effect, we studied reversibility violation within the HMC using a test volume with
size 𝑉 = 323 × 64 and measuring the variance of 𝛿Δ𝐻 for different solvers. 𝛿Δ𝐻 is given by the
difference of the Hamiltonian at the beginning of the trajectory with the Hamiltonian integrated
to 𝜏 = 1 and integrated back to the start. As discussed in Ref. [17] for variances below 0.01
no deviations from the expectation values, such as the plaquette, are found. To match the same
precision in 𝜎2(𝛿Δ𝐻) as the mixed-precision solver of QPhiX, the square residual of the multigrid
solver needs to be two orders of magnitudes smaller. For all our physical point ensembles, we
checked reversibility and find that for the selected solver criteria (see [1]), 𝜎2(𝛿Δ𝐻) is below the
bound of set in Ref. [17].

7
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Figure 5: Comparison of different numerical integrators. The variance of the energy violation is plotted as
a function of the step size for a test ensemble of volume 𝑉 = 243 × 48.

4.2 Nested force gradient integrator

The computational cost of molecular dynamics scales with the number of integration steps. At
constant acceptance rate it follows cost ∝ 𝑉1+ 1

2𝑛 with 𝑛 the order of the selected integrator. Thus
higher order schemes have a better volume scaling. A class of various different simplectic reversible
integration schemes are discussed in Ref. [26]. This includes schemes improved with force gradient
terms. For example, the second minimal norm scheme can be extended to fourth order

Δ(ℎ) = 𝑒ℎ
1
6 �̂�𝑒ℎ

1
2 �̂�𝑒ℎ

2
3 �̂�−

1
72 ℎ

3�̂�𝑒ℎ
1
2 �̂�𝑒ℎ

1
6 �̂� (11)

by including the force gradient term 𝐶, which is given by 𝐶 = 2
∑𝑉 ,3
𝑥=1𝜈=0

𝜕𝑆
𝜕𝑈𝜈 (𝑥)

𝜕2𝑆
𝜕𝑈𝜈 (𝑥)𝜕𝑈𝜇 (𝑥) .

The additional second derivate term, needed in the force gradient term, can be approximated by
an additional force term, as outline in Ref. [25]. This not only reduces the cost of the calculation
of one force calculation but also simplifies the application by implicitly taking care of cross-terms
between different parts of the actions. It turns out that the force gradient improves the minimal
norm scheme of Eq. 11 and outperforms for larger volumes the other integrators, as shown in Fig. 5
for a 𝐿 = 24 lattice. Note that to tune the nested integrator setup we minimise the cost function at
constant acceptance rate using an effective model for the higher order terms in line with Ref. [27].

4.3 Computation costs

A summary of the improvements and the achieved reduction in computational costs per HMC
trajectory are shown in Fig. 6. By enabling DDalphaAMG within the HMC, there is a reduction
of the computational cost per trajectory by more than one order of magnitude [4]. In addition,
the adaptation of DDalphaAMG to the non-degenerate twisted mass operator speeds up the non-
degenerated sector, as discussed in Ref. [18]. The use of higher order integrators has given further
improvements, especially going to larger volumes, such as 𝐿 = 96 [28]. Note that there is still
space for further improvements, for example, by coarse level improvements, which are currently
under investigation. Moreover, a multi right handside version of DDalphaAMG is available, which,
however to utilize, would require larger refraction of the force computation [29]. We are investigating

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
8
4

Twisted mass gauge ensembles at physical values of the quark masses Jacob Finkenrath

Figure 6: The computational cost of a trajectory for 𝑁 𝑓 = 2 + 1 + 1 simulations as a function of the lattice
spatial extent 𝐿.

how this potentially could be adapted within a lattice QCD python API [32], which is currently
under development.

4.4 Autocorrelations at the physical point

One major unsolved challenge in lattice QCD with periodic boundary conditions is adequate
sampling of different topological sectors at very fine lattice spacings [30]. We have monitored the
gauge definition of the topological charge 𝑄 at gradient flow time 𝑡0. As expected for our range of
lattice spacings between 𝑎 ∼ 0.057 fm to 𝑎 ∼ 0.082 fm, the topological charge is fluctuating well
between topological sectors. Moving towards finer lattice spacing, we have currently indication for
an increase of the autocorrelation time, hinting at the fact that for simulations below 𝑎 < 0.045 fm
further algorithmic improvements will be needed in order to sample the topological charge properly
within 3000 MDUs.

5. Conclusions

With the current ensembles we are able to study finite volume and lattice spacing arte-
facts directly at the physical point. Using the three ensembles cB211.072.64, cC211.060.80 and
cD211.054.96, we can take the continuum limit, and with the two ensembles at the B-lattice spacing
we can study finite volume effects. In the future, we are planing to simulate at larger volumes and
explore new approaches for enabling simulations at lattice spacings smaller than 0.05 fm, which
are currently limited by the critical slowing down of the algorithms and their scalability with the
volume. Due to the behavior of the strong scaling window of our multigrid solver DDalphaAMG,
the real time per trajectories will further increase resulting in longer generation times per ensemble.
We are taking this issue into account in our future software development, by improving and enabling
linking to state-of-the-art QCD software libraries within tmLQCD, such as QUDA, as well as by
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Figure 7: The history of the topological charge 𝑄 at gradient flow time 𝑡0 of the physical point runs
plotted versus the molecular dynamics (MDUs). We show from top to bottom cB211.072.64, cB211.072.96,
cC211.060.80 and two different replicas for cD211.060.80.

developing a new user-friendly flexible python API lyncs [32]. This will enable HMC simulations
on the next generation of high performance systems.
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