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Properties of the n and n’ mesons Gunnar S. Bali and Jakob Simeth

1. Introduction

Within the SU(3) nonet of pseudoscalar mesons, the 7 and 1’ particles play a special role.
Resorting to a state mixing picture, based on an effective Lagrangian, these can be viewed as
mixtures between octet and singlet components. While the former as a pseudo-Goldstone boson
of SU(3) flavour symmetry breaking is expected to be light, the singlet component becomes
heavy due to the anomalous breaking of the axial U(1) symmetry. In the chiral effective field
theory (chiral perturbation theory, ChPT), this fact can be taken into account by simultaneously
expanding around small quark masses and the large-N. limit where the anomaly vanishes [1-4].
This approach, in combination with experimental input, often at an unknown, low scale, enables the
prediction of many properties like the decay constants, see, e.g. [5, 6]. However, using such input
necessitates one to neglect the QCD-scale dependence of some of the low-energy constants (LECs).
This can be motivated in part by the Okubo-Zweig-lizuka (OZI) suppression of scale-dependent
contributions [5]. The extent of validity of this approximation and of the large-N. ChPT expansion
itself, however, has not been established from first principles.

Flavour diagonal mesons are difficult to study on the lattice for a variety of reasons: Firstly,
disconnected quark line diagrams contribute substantially to the correlation functions which, as
a result, are noisy and therefore computationally demanding. Secondly, the  and " mesons are
no flavour eigenstates and require a set of multiple interpolators to create them efficiently. In the
literature this is often referred to as the “mixing” of flavour octet and singlet “states” (although
there is no mixing in QCD of mass eigenstates). A careful analysis and sophisticated methods
are required to isolate the respective ground state contributions in the presence of higher excited
states from the resulting matrix of correlation functions. Only a precise knowledge of the resulting
linear combinations of interpolators enables us to compute matrix elements, where these states
are destroyed by axial and pseudoscalar local quark bilinears or by local gluonic operators and to
determine the decay constants and anomaly matrix elements.

Although there have been previous lattice determinations of the masses [7-23] and pseu-
doscalar matrix elements [19, 24-26] that can be related to the decay constants within certain
model assumptions, a thorough physical point determination of the decay constants and anomalous
matrix elements has only recently been published by the present authors [27]. Here we summarize
these results that have been obtained, carefully extrapolating to the continuum limit and employing
next-to-leading-order (NLO) large-N. ChPT in the continuum. In addition we discuss the role of
higher lying states whose structure in terms of singlet and octet contributions is not well known
phenomenologically.

2. Lattice Setup

We employ twenty-one CLS gauge ensembles generated with Ny = 2 + 1 non-perturbatively
O(a) improved Wilson fermions. For details, see [28]. Two mass trajectories were realized that
both lead to the physical point. Along one trajectory the average quark mass is held fixed [28], along
the other trajectory the strange quark mass is kept approximately constant [29]. All ensembles have
large volumes with Ly > 2.2fm and LM, > 4 on most of them. To have full control over the
continuum limit extrapolation, we incorporate four lattice spacings, 0.050 fm < a < 0.086 fm.
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Figure 1: The positions of the analysed CLS ensembles in the quark mass plane. Both trajectories intersect
close to the physical point (black circle) and one ensemble (D150) is very close to that point. Shading

—2 . .
represent cuts on the average pseudoscalar meson mass 12tgM = 4t0(2M12< + M72,) that we impose during
our chiral extrapolation procedure. Symbols encode the four lattice spacings.

On every configuration, we compute a matrix of correlation functions,

Cy(5.0) = 1 3 (Q[Bi(7.1+ 1B (-5.1w)| ) (1)

fin tin

where [Q2) is the vacuum and N, denotes the number of source time slices that we average over.
We mostly use open boundary conditions and in these cases we sum only over the bulk of the lattice
where boundary effects are negligible.

The interpolators $B; are octet and singlet combinations of spatially smeared pseudoscalar
quark-antiquark interpolating operators,

1 1 2
P8 = — (P + P! —2P%) = —Pl - \/;DS, 2)
V6 ( ) V3 3
po- L (Pr+ Pl e = \EP" + L 3)
NG SN
with P4 = gysq, q € {u,d,s} and P¢ = \/% (ﬁysu +3y5d). To extract matrix elements, we

also use corresponding (partially O(a)-improved) local axialvector Aj = Yty ys¥ + acad, P?
(¥ = (@,d,5)), and pseudoscalar currents P¢ = yyt“ysy at the sink. Note that this normalization
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differs from that of eqs. (2)—(3) by a factor 1/v2. The disconnected loops entering the correlators
are estimated using 96 stochastic sources. To keep near-neighbour noise under control we subtract
the (for our action and operator) maximum possible number of terms of the hopping parameter
expansion [30] from the propagator and place the stochastic sources at every fourth timeslice
(dilution, partitioning [31]) at a time. This corresponds to about 300 to 600 thousand solutions of
the Wilson-Dirac equation per ensemble. For the extended interpolators, we employ two different
levels of smearing. The matrix of correlators is usually built from B; € {P¢, P, P8} at two
different smearing levels, except at the symmetric my = m, point, where the Wick contraction
between singlet and octet currents vanishes and yields a block-diagonal matrix. This enables us to
split the problem into two parts and to analyse pure octet and singlet correlation matrices separately.

Instead of solving the generalized eigenvalue problem [32, 33], we directly fit to the Euclidean
time derivative to improve the signal [34, 35],

0,C(1) ~Z(0:D(1)) ZT, “)
where 9,C(t) = (C(t +a) — C(t — a)) /(2a) is the symmetric discretized derivative and
9:D(1) = ~diag [Ey exp (~Ent)] 5)

for open boundaries. For periodic boundaries the back-propagating part is taken into account. All
time-dependence is contained in the diagonal matrix of eigenvalues, D, while the amplitudes are
encoded in the matrix Z;, = (B;|n)/V2E, V3, where |n) is the eigenstate corresponding to the n-th
energy level E, and V3 is the spatial volume.

To improve the stability of the multi-exponential fit and to increase the sensitivity to the n’
state, we include a generalized version of the effective mass into our fully correlated fit,

3; log C(t) =(8,C(1))C™' (1) ~ (28, D(1)Z7) (ZD(1)Z") "' = —Z diag\ ' (E,) 27", (6)

which is constant in time (up to excited states corrections and statistical noise). We further improve
the signal by including data at the first non-zero momentum into our combined fit, employing
the continuum dispersion relation, E,(p) = VM3 + a?p?. We show the results on the individual
ensembles together with a comparison to other lattice determinations in fig. 2

Having extracted energies and eigenstates of the n and n” mesons, we are in a position to
compute decay constants,

Z5(a, ) (QAG M(p)) = iF§pus (7

where Z¢ (u) is a renormalization factor. While Z4 = Zf\ is scale-independent, the singlet renor-
malization factor Z3 (¢) = Zg (1) depends on the scale. The normalization Ay, = Y%y, ysy that we
adopt corresponds to F 73rO ~ 92 MeV. Note that there are two decay constants each for M € {n,n'}:
singlet (@ = 0) and octet (a = 8). These are often parametrized in terms of two decay constant
parameters F 0and F?® and two angles 6g and 6,

8 0
g Ly
F n’ F n’

®)

F8cosfs —FYsin6,
F8sinfy FYcosfy |
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Figure 2: Recent Ny = 2+ 1(+1) lattice results for the masses of the  and n” mesons. Most points have
been simulated at approximately physical strange quark masses (open symbols), whereas in this work we
also include an additional trajectory along which the average of the quark masses is kept constant (filled
symbols). The three sets of points in the shaded regions left of the physical point (dashed line) correspond
to the continuum and chirally extrapolated results of JLQCD [20] (who do not give an estimate of M,,),
ETMC [26] and this work.

3. Physical point results for masses and decay constants

We perform a combined continuum limit and chiral extrapolation of both masses and the four
decay constants, employing large-N. ChPT to NLO [6, 36]. This allows us to describe the quark
mass dependence of these six observables in the continuum theory by a common set of six low-
energy constants: the pion decay constant in the chiral limit, ', the large-N versions of the familiar
SU@3) LECs Ls and Lg, as well as the LECs Mg, A1 and A;. The singlet mass My(u) in the chiral
limit is related to the topological susceptibility and depends on the QCD scale . The remaining
two OZI suppressed parameters Aj(u) and Ay (u) depend on the QCD renormalization scale too.
This is due to the anomalous dimension of the singlet axialvector current. Since this vanishes at
leading order, in the limit u — oo, the singlet renormalization factor Z? (co) remains finite and we
perform our fits in that limit. If needed, the results can then be evolved back to lower energy scales.
The difference between the singlet and the non-singlet renormalization factors for our lattice action
is known perturbatively to two loops [37] and we use the non-perturbatively determined Z4 [38]
for the non-singlet current. Note that chiral logs only appear at NNLO in the large-N. ChPT power
counting. Therefore, all NLO LECs are independent of the ChPT renormalization scale (but some
depend on the QCD scale u).

In order to account for the lattice spacing dependence, we include parameterizations of three
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‘ no priors ‘ exp. masses as priors
Ls 158 () (), (), 107 | 166/(9) g (), (§), 107
Ly | 0.96 () g (£2)4 (), 107 | 108 (i) g (D) (), 107
-1/2 -1/2

Mo =) | 167 () o (B )y Drenorm (85) | 1:62 B B By Brenorm (814 )

=785 (298)stat (12) syst (12);, MeV =761 (%:l;)stat (}Elg)syst (11);, MeV
F 0.1890 (3), (5), 1), (86) | 01866 (9 (), (12, (861)

=88.83 ( )stat (} )sy@t (132)’30 MeV =87.71 ( )stat (28 )syst (131)t0 MeV
A](,u = OO) -0. 22( )stat( )a (g ( )renorm -0.25 ( )stat (?)a (}) ( )renorm
AZ('u = OO) ( )stat (1 )a (184) (S)renorm 0.11 ( )stat (8)a (g) ( )renorm

Table 1: Large-N. LECs parametrizing the continuum limit of our results on the masses and decay constants.
The left column is obtained from a unconstrained but fully correlated fit to all 21 ensembles. The right column
is a fit to the same data but adding the physical masses (11) as a prior and gives very similar results. The

conversion to physical unit was done using (8t6( )~1/2 = 470(7) MeV in the chiral limit [27, 28, 41].

unknown linear improvement coefficients of the singlet and one of the octet current into our fit,
In this way, full O(a)
improvement is achieved with four additional fit parameters. We then add systematically O(a’A?),
O(a’>A(2m¢ +my)) and O(a?A(mg —my)) terms to all observables and subsequently remove those
that we cannot determine.

while setting the remaining coefficients to their literature values [39].

In this way, we carried out 17 different fits that all gave acceptable y? values. The systematic
error associated with the continuum limit is computed from the central 68.5 % range of the scatter
of these results. On every ensemble we take into account the correlations between the non-singlet
quark masses (the arguments of the fit functions) and the observables using Orear’s method [40].
The best fit gives y?/Ng; ~ 1.47 and we quote its result as central values. We plot all our results at
non-physical quark masses and their extrapolations to the physical point in fig. 3.

To estimate the systematic uncertainties from the chiral extrapolation we follow a similar
approagh and remove ensembles with large average squared non-singlet pseudoscalar masses
12t0M~ = 4t9(2M% + M2), see fig. 1.
wo € {a='/2,a7!,2a~"} from which we start the evolution of the scale-dependent singlet renormal-

We also repeat fits for different initial energy scales

ization factor to y = oo.
Our central fit is parameterized in the continuum by the LECs listed in the left column of tab. 1
and yields for the masses at the physical point,

hy —
My =1.168 (§) o (8)4 @), (B15)"% = 554.7 (£9) 0 )yt (7:01, MeV and  (9)
Moy =1.958 (7)o (9, (8), (5712 =929.9 (29) ., (% 3)gyst (117 MV, (10)

using the Wilson flow scale at the physical point (StSh)‘1 /2 = 475(6) MeV [42] to convert to physical

units. We find reasonably good agreement when comparing these results of Ny =2 + 1 QCD with
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Figure 3: Chiral extrapolation of the masses (top) and decay constants (bottom) as a function of M ,Zr The
two analyzed trajectories meet at the physical point.
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Figure 4: Scale dependence of the large-N,. ChPT LECs A and A,.

the known experimental masses,
PDG [43] : Mgh =547.862(17) MeV  and Mgl,l =957.78(6) MeV. (11)

The masses are 0.7 standard errors above and one standard error below the experimental values
for the n and n’, respectively. We also carry out a second fit incorporating the knowledge of the
physical masses by adding them as priors to the x? function and obtain similar results for the LECs
listed in the right column of tab. 1. Using this second set of LECs, we obtain for the decay constants
in the angle representation, eq. (8),

= 0.2421 () o ($), (), BEHT = 115.0 (1) o, (5:) gyst (1.5)y MV, (12)

= =0.450 (3¢) ar (6) (8) ¢ ()renorm = =258 (5:1) st (53) e (13)
FO(u=2GeV) = 02108 () e (), (), G8)renorm 816D

=100.1 (%) g g)syst (1.3);, MeV, (14)

= =0.141 (36) e () (F) = =81 (D) (1:3)5ysc- (15)

In comparison to the frequently used flavour representation, the octet/singlet representation has the
advantage that only the singlet decay constants depend on the renormalization scale. We refer to
tabs. 24 and 25 of [27] for results at several scales and in different parameterizations.

The QCD scale-dependence cannot be determined from phenomenological fits to experimental
low-energy data. Therefore, only scale-independent combinations of the large-N. ChPT LECs
Mg, A1 and A, [4] are accessible, unless additional assumptions are made. The most prominent
framework is the Feldmann-Kroll-Stech (FKS) model [5, 44, 45] which uses the fact that in the
flavour basis the difference between the light and strange mixing angles is OZI suppressed and
proportional to A;. This reduces the number of independent parameters for the four decay constants
to three, setting ¢, = ¢5 and assuming A; = 0. Our analysis shows that the latter approximation
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indeed holds at low energy scales (u ~ 1GeV), see fig. 4, and that the FKS model works to
a reasonable accuracy. Therefore, our results are in good agreement with [45] and many other
phenomenological determinations.

4. Pseudoscalar states above the 1’
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Figure 5: The octet (blue) and singlet (red) energy levels at the mg; = m, point versus the squared lattice
spacing. For orientation also the experimental resonances (at physical quark masses) are shown.

We usually analyse a 3 X 3 matrix of correlation functions to extract the lowest two energy
levels, the 7 and the ’. The higher excitations are not resolved but effectively described by a third
energy level. At the Ny = 3 symmetric point the matrix of correlation functions is block diagonal
regarding the singlet and octet sectors. Therefore, at this point, we can resolve higher excitations.
In experiment several resonances with the same quantum numbers are relatively close to the n’,
namely the 1(1295), n(1405) and the 1(1475). The first state decays mostly into pzzr. This may
indicate that the octet component dominates. In contrast, 17(1405) and 7(1475) decay into KK,
aon etc. The n(1405) which, unlike the n(1475), has not been observed to decay into yy has even
been postulated to be a glueball [46], however, unlike the 17(1475) and like the 1(1295), it also
decays into nr.

On our mg = my ensembles we use a 2 X 2 matrix of smeared singlet interpolators for the
n’ = no and in case of the octet we include the local current in addition, resulting in a 3 X 3 matrix.
This enables us to determine the first excited singlet and the first two excited octet states, see fig. 5.
At a = 0 we have included the experimental spectrum for orientation. One should keep in mind,
however, that this refers to the physical point and not to my; = m,. We observe large cutoff effects
that have a similar shape for all the excited states. In contrast, for the ground states we are unable
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Figure 6: The anomalous gluonic matrix element a,, (left) and a,, (right) determined via the singlet AWI
from fermionic matrix elements, eq. (18). The coloured points have been adjusted for lattice spacing effects,
while the grey points indicate the unshifted data. The two curves correspond to the NLO large-N. ChPT
parametrization derived in [27] for trajectories with a constant average quark mass and a constant strange
quark mass. The black error bars indicate the final results at the physical point including statistical and
systematic errors.

to resolve any lattice spacing dependence. The third octet state is around 4 GeV, indicating that the
first excitation becomes the n(1295) at the physical point and that the (1405) and 1(1475) may
have large singlet components, although we are unable to resolve more than one singlet state within
this energy region within our statistical accuracy.

5. Gluonic matrix elements

After constructing interpolators that create the 7 and 7’ mesons, based on the overlap factors Z;,
of eq. (4), we may also compute local matrix elements other than the decay constants. The singlet
axial Ward identity connects axial and pseudoscalar quark bilinear currents with the topological
L Ff, (0 F, (1),

charge density w(x) = —55

DAL = (JyS{M, t“}lj/) + V650, (16)

where M = diag(mg¢, me, my) is the quark mass matrix, a € {0, ..., 8} labels the generators of
U(3), 1% = 24/2 and t° = 1/V6. Hats denote renormalized quantities. For the determination of the
topological charge density we evolve the gauge fields to a gradient flow time V8 = 8t; ~ 0.413 fm.

Under renormalization w mixes with d,, Ag,
& = Zow + Zoa0u A, (17)

and the renormalization factors are unknown. We therefore start by constructing the anomalous
matrix elements a, () = 2(Q|d|n") by combining axialvector and pseudoscalar matrix elements,

aM(u)z\/gz;(u)aﬂ (Q|A2|M)+2—\;/§§ZA gm(mpgw)—rﬁ(gww) . (18)

10
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Figure 7: (Left) Z,, from solving eq. (21). The mg = m, points are not shown since in these cases F’ 2 =0
and the equation system is singular. (Right) Values of Z,,4/Z from solving eq. (21), assuming Z,, = 1.

The PCAC masses i = (2me+my)/3 and 6m = my—my are determined from the non-singlet PCAC
relations (e.g.,a = 1 and a = 4) and we setrp = Z},/Zp = 1 since the difference Zy, — Zp = 0(g®
for Wilson quarks. We then attempt a combined fit to the a,, and a,, data, again parameterizing all
four additional unknown pseudoscalar O(a) improvement coefficients within the fit. We derived
the full NLO ChPT continuum expression in [27]. To this order no LECs enter other than those that
we already have determined above. In view of the limited statistical accuracy, we do not attempt to
parameterize higher lattice artifacts and set priors on the six LEC, keeping them close to the central
fit results in tab. 1. From this fit with y?/Ngs ~ 1.09, we obtain at the physical point

ay(p=0) =0.1564 (33) . (45)Syst(8t8h)‘3/2 = 0.01676 (£9) o (48) 5y (65),, GeV>,  (19)
ay (= 00) = 0308 (19) .. (80)sysc (872732 = 0.0330 (18), ., (80)ys (16),, GeV>.  (20)

The systematic error is taken as the difference between the results of this fit and the NLO prediction
using the previously determined LECs alone. The fit and the physical point results are shown in
fig. 6. Results at lower renormalization scales can be found in tab. 19 of [27].

To establish the consistency between the above fermionic definition of the matrix elements a pq
and a direct gluonic determination, we investigate the mixing under renormalization eq. (17). We
start by solving the set of linear equations

Zya
(k) =22 QUOIM) + 2755 M3 Py (0. 1)
for the unknown renormalization factors using the fermionic definition of a s for M = n and
M =n’. The result for Z,, is plotted on the left panel of fig. 7 and is consistent with Z,, = 1, which
we expect when using flowed gauge fields. We confirm this observation by fitting the topological
susceptibility on many CLS ensembles to the leading order ChPT continuum expectation for the

11
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Figure 8: Topological susceptibility for many of the CLS ensembles described in [41]. Filled symbols mark
ensembles that are simulated with a constant sum of quark masses (solid lines), open symbols correspond to
ensembles with the strange quark mass fixed to approximately the physical value (dashed lines). Lines and
shaded regions are the result of a fit to eq. (22), adding a?, a* and a* coefficients. The continuum limit result
(black lines) is very close to both the fit result at 5 = 3.85 as well as the leading order expectation (grey
lines), when using V810 F = 0.1866, see tab. 1 and setting Z,, = 1.

Ny =2+ 1 theory [1, 47],
F?
T= >

-1

1 2

M2 M2 W) ’ (22)
K Ps b

where we parameterize the sizable cutoff effects with quadratic, cubic and quartic terms in the
lattice spacing. Data and fit are shown in fig. 8. We obtain F, /8% /Z4 =0.190(13), which agrees

with \/% = (0.1866(48) from the parametrization of the masses and decay constants (see tab. 1)
if we set Z,, = 1, which demonstrates that indeed Z,, ~ 1 with the gradient flow definition of w.
Assuming Z,, = 1 and using the fermionic definition of a »(, we isolate the ratio Z,,4/Z% in
eq. (21), that only depends on the coupling parameter but not on the scale. We plot this in the
right panel of fig. 7. Using weighted averages for each lattice coupling, this determines the second
renormalization factor and enables a comparison between the fermionic (eq. (18)) and gluonic
(eq. (21)) definitions of the anomalous matrix elements, see the scatter plot fig. 9. We also show
the anomalous matrix elements without taking the mixing into account (Z,, 4 = 0). In this case, one

would have underestimated a,,(), by about 30%, using the gluonic definition.

7](
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Figure 9: Scatter plot of the fermionic (eq. (18), horizontally) and gluonic (eq. (21), vertically) determinations
of the gluonic matrix elements ayo. The mixing with the derivative of the axialvector current is non-
negligible: the unrenormalized lattice matrix elements (pale red points) do not agree with the fermionic
definition.

6. Summary

In these proceedings we summarized our computation of the masses, the complete set of decay

constants and the anomalous matrix elements for the 7 and 5’ states that we recently published in [27].
The interested reader is referred to that publication for more technical detail and comparison to
literature values. The decay constants and anomalous matrix elements were determined for the
first time from first principles. Our physical point extrapolation is facilitated by using twenty-one
CLS ensembles on two mass trajectories and four lattice spacings. We employed NLO large-N.
ChPT to describe the continuum limit mass dependence. The results are well parameterized by this
ansatz, including the anomalous matrix elements and we determined all six NLO LECs. The scale
dependence has been studied and shows that the FKS approximation [5, 44, 45] works surprisingly
well at low energies, which is a consequence of Aj(1 GeV) = 0. In addition to the already published
results, we determined masses of higher excitations for m, = my, see fig. 5. We found a very large
mass for the second excited octet state while the first excited octet state has a smaller mass than the
first excited singlet state.
Acknowledgments. This work was supported by the Deutsche Forschungsgemeinschaft (SFB/TRR-
55 and FOR 2926) and the European Unions Horizon 2020 research and innovation programme
under the Marie Sktodowska-Curie grant agreement no. 813942 (ITN EuroPLEx) and grant agree-
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