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Continuum limit of baryon-baryon scattering with SU(3) flavor symmetry Jeremy R. Green

1. Introduction

It is very computationally challenging to study multibaryon systems using lattice QCD. Because
of this, past calculations had to make the assumption that discretization effects are small. In these
proceedings, we present calculations done at a single SU(3)-symmetric quark mass point, covering
a wide range of lattice spacings and several volumes. This allows us to perform the first systematic
study of discretization effects in a multibaryon system.

In Section 2, we briefly describe our calculation and in Section 3, we summarize a study of the
𝐻 dibaryon that was already reported in Ref. [1]. The talk at Lattice 2021 was based on the first
version of [1]. Since then, we have revised the analysis by including an additional ensemble and
choosing fit regions for determining the spectrum in a more conservative way. These proceedings
are based on the revised analysis. For a more complete discussion of the setup of the calculation
and the 𝐻 dibaryon study, we refer the reader to Ref. [1].

The following two sections describe preliminary analyses that extend our work to additional
systems: the 1𝐷2 partial wave (Section 4) and the SU(3) 27-plet (Section 5). Finally, our conclusions
are in Section 6.

2. Lattice setup
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Figure 1: Box size 𝐿 and lattice spacing 𝑎 for the
ensembles used in this work.

This calculation is based on eight ensem-
bles generated by CLS [2], with three degen-
erate quarks that have a mass set to the aver-
age of the physical 𝑢, 𝑑, and 𝑠 quark masses,
corresponding to 𝑚𝜋 = 𝑚𝐾 ≈ 420 MeV. The
ensembles span six lattice spacings and a range
of volumes, as shown in Fig. 1.

Our analysis is based on finite-volume
spectroscopy and quantization conditions. In
a given symmetry sector, we compute a matrix
of two-point correlation functions,

𝐶𝑖 𝑗 (𝑡) ≡ 〈O𝑖 (𝑡)O†
𝑗
(0)〉, (1)

where the two-baryon interpolating operators {O 𝑗} are formed from linear combinations of products
of momentum-projected single-baryon interpolators. In addition to definite flavor, total momentum
®𝑃, and irreducible representation of the little group of ®𝑃, the operators also have a definite two-
baryon spin.

To determine the spectrum, we solve a generalized eigenvalue problem,𝐶 (𝑡𝐷)𝑣𝑛 = _𝑛𝐶 (𝑡0)𝑣𝑛,
and use the eigenvectors to construct an approximately diagonalized correlator matrix �̃� (𝑡) with
diagonal entries approximately proportional to 𝑒−𝐸𝑛𝑡 at large 𝑡. We form the ratio of �̃�𝑛 (𝑡) to
a product of two single-baryon correlators and perform fits to obtain the shift Δ𝐸𝑛 from the
corresponding noninteracting level.

Finite-volume quantization conditions [3–6] provide a relation between the spectrum and the
baryon-baryon scattering amplitude. We use a form similar to Ref. [7], which says that the spectrum
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Figure 2: Singlet spectrum in trivial irreps: 𝑝2 versus 𝐿 in the rest frame and four moving frames. The
colored and gray points show lattice spin-zero and spin-one energy levels, respectively. The blue curves
show the energy levels in the continuum obtained from a global fit and the red dashed curves show the
noninteracting levels.

is given by solutions of
det

[
�̃�−1(𝑝2) − 𝐵(𝑝2)

]
= 0, (2)

where �̃� contains the scattering amplitude and 𝐵 depends on the volume, ®𝑃, and irrep. In this work,
our preferred kinematic variable is the center-of-mass momentum 𝑝2 ≡ (𝐸cm/2)2 − 𝑚2

𝐵
.

We study the scattering of two octet baryons. The flavor content of this baryon-baryon system
belongs to one of five SU(3) irreps:

8 ⊗ 8 = (1 ⊕ 8 ⊕ 27)𝑆 ⊕ (8 ⊕ 10 ⊕ 10)𝐴, (3)

where the subscripts denote irreps appearing in the symmetric and antisymmetric products. The
simplest irreps to study are the singlet and septenvigintuplet, since they appear only in the symmetric
product, meaning that even partial waves have spin zero and do not couple to other partial waves.
In particular, our initial focus is on the 𝐻 dibaryon, which appears in the singlet 1𝑆0 channel.

3. 𝑯 dibaryon (singlet 𝑺-wave)

The 𝐻 dibaryon is a conjectured 𝑢𝑢𝑑𝑑𝑠𝑠 bound state that is a scalar and an 𝑆𝑈 (3) singlet [8].
Lattice calculations performed with dynamical fermions agree that this bound state exists for heavier-
than-physical quark masses but do not agree not on its binding energy, with results varying from a
few MeV up to 75 MeV.

The SU(3) singlet baryon-baryon spectra from our calculation, in the trivial irrep of the rest
frame and in four moving frames and on all ensembles, are shown in Fig. 2. One can see a clear
trend as the lattice spacing is varied, with coarser lattice spacings corresponding to lower energies
that are further below the noninteracting levels.

3
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Given the energy levels at nonzero lattice spacing, our goal is to obtain the continuum phase
shift. Two strategies for this are illustrated in Fig. 3. Conceptually, it is most straightforward to follow

𝐸 (𝐿, 𝑎) 𝛿(𝑝2, 𝑎)

𝐸 (𝐿) 𝛿(𝑝2)

lattice
quantization?

𝑎 → 0𝑎 → 0

continuum
quantization

Figure 3: Two paths, red and blue, from the lattice
finite-volume energy levels 𝐸 (𝐿, 𝑎) to the continuum
phase shift 𝛿(𝑝2).

the red path, by performing continuum extrap-
olations of the finite-volume energy levels and
then obtain the scattering amplitude using quan-
tization conditions, which have been derived in
the continuum. However, in practice this is
difficult because it requires matched volumes at
multiple lattice spacings. Alternatively, one can
follow the blue path by first obtaining a scatter-
ing amplitude at finite lattice spacing and then
extrapolating it to the continuum. However,
this requires a quantization condition at finite
lattice spacing, which has only been studied for
a simple model in Ref. [9].

Our strategy is to defer a rigorous under-
standing of quantization conditions and scatter-
ing amplitudes at finite lattice spacing to future
work. Instead, we apply continuum quantization conditions to data at nonzero lattice spacing and
assume that symmetry-breaking effects are small so that the effect of lattice artifacts is to only
modify the parameters of a continuum scattering amplitude.

Truncated to 𝑆-wave, the quantization condition becomes

𝑝 cot 𝛿0(𝑝2) = 𝐵00(𝑝2) ≡ 2
√
𝜋𝐿𝛾

𝑍
®𝑃𝐿/(2𝜋)

00

(
1,

(
𝑝𝐿

2𝜋

)2
)
, (4)

where 𝑍 ®𝐷
00 is a generalized zeta function. Given an energy level corresponding to momentum 𝑝2,

this provides the phase shift 𝛿0(𝑝2) at that scattering momentum. Conversely, given an ansatz for
𝛿0(𝑝2), the solutions to this equation provide the finite volume spectrum.

We determine 𝛿0(𝑝2) in the continuum by performing global fits to the spectra from all of our
ensembles. Our fit ansatz assumes that 𝑝 cot 𝛿0(𝑝2) can be described by a polynomial in 𝑝2,

𝑝 cot 𝛿0(𝑝2) =
𝑁−1∑︁
𝑖=0

𝑐𝑖𝑝
2𝑖 , 𝑐𝑖 = 𝑐𝑖0 + 𝑐𝑖1𝑎2. (5)

We use the quantization condition to transform this ansatz for 𝛿0(𝑝2) into an ansatz for the spectrum,
and fit to the spectrum. States below the 𝑡-channel cut or above the inelastic cut are excluded from
our fits. In addition, we exclude the excited states in frames (0, 1, 1) and (1, 1, 1) because a nonzero
𝐷-wave amplitude is needed to describe them (see the next section).

Bound states correspond to poles on the physical sheet of the scattering amplitude below
threshold, i.e. for 𝑝 = 𝑖^, ^ > 0. They can be found by solving for 𝑝 cot 𝛿(𝑝) = −

√︁
−𝑝2. In all

cases, we find a bound 𝐻 dibaryon. The binding energy depends strongly on the lattice spacing, as
shown in Fig. 4. Our final result is 𝐵𝐻 = 4.56 ± 1.13 ± 0.63 MeV, where the second (systematic)
uncertainty is obtained by varying the plateau region used to obtain the spectra and by performing
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Figure 4: Binding energy of the 𝐻 dibaryon
versus squared lattice spacing. The points
are obtained from analyzing individual en-
sembles and the curves are from global fits
to the spectra on multiple ensembles.
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Figure 5: Singlet spectrum in nontrivial irreps containing spin-zero states. Spin-one states and spin-one
noninteracting levels are shown in gray; see the caption of Fig. 2.

cuts on 𝑎, 𝐿, and 𝑝2. For further details about the analysis, including a cross-check based on the
red path in Fig. 3, see Ref. [1].

4. Singlet 𝑫-wave (preliminary)

Nontrivial irreps provide information about higher partial waves. Figure 5 shows preliminary
estimates of SU(3) singlet energy levels relevant for the 1𝐷2 partial wave. Here we rely on overlaps
between states and interpolating operators to identify the spin-zero states; in some cases, there are
many more spin-one states.

For this flavor channel, both �̃� and 𝐵 are diagonal in spin, so that the quantization condition
factorizes and spin zero can be analyzed independently of spin one. Neglecting 𝐺-wave and higher
partial waves, the quantization condition for the irreps in Fig. 5 has the form

det
[
𝑝5 cot 𝛿2(𝑝2) 𝐼𝑛×𝑛 − 𝐵(𝑝2)

]
= 0, (6)

where 𝐼 is the 𝑛 × 𝑛 identity matrix, 𝐵(𝑝2) is a matrix involving generalized zeta functions, and

5
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Figure 6: Singlet 𝑝5 cot 𝛿2 (𝑝2) versus
𝑝2, in units of the pion mass, for ensem-
bles N202 (solid colors) and H200 (with
black outlines). For irreps with two solu-
tions, just one of them appears within the
bounds of this plot.

𝑛 = 1 or 2. Given an energy level corresponding to momentum 𝑝2, the eigenvalues of 𝐵(𝑝2) provide
the one or two possible values of 𝑝5 cot 𝛿2(𝑝2).

We also return to the trivial A1 irrep in frames (0, 1, 1) and (1, 1, 1), for which we were unable
to describe the excited-state energy using only 𝑆 wave. Including both 𝑆 and 𝐷 waves, we get

det

[(
𝑝 cot 𝛿0(𝑝2) 01×𝑛

0𝑛×1 𝑝5 cot 𝛿2(𝑝2) 𝐼𝑛×𝑛

)
−

(
𝐵00(𝑝2) 𝐵02(𝑝2)
𝐵20(𝑝2) 𝐵22(𝑝2)

)]
= 0. (7)

Taking the Schur complement, we obtain

𝑝 cot 𝛿0(𝑝2) = 𝐵00(𝑝2) + 𝐵02(𝑝2)
[
𝑝5 cot 𝛿2(𝑝2)𝐼𝑛×𝑛 − 𝐵22(𝑝2)

]−1
𝐵20(𝑝2). (8)

The fact that the low-lying spin-zero noninteracting levels are singly degenerate implies that the
matrix 𝐵(𝑝2) has just one divergent eigenvalue at each of these levels. From this, we find that
the RHS of Eq. (8) has a pole only when det[𝑝5 cot 𝛿2(𝑝2)𝐼𝑛×𝑛 − 𝐵22(𝑝2)] = 0. If 𝛿2(𝑝2) = 0,
this reduces to the noninteracting levels. In general, if 𝛿0(𝑝2) does not pass through zero, then an
interacting level will be found between every pair of poles. As seen in Fig. 2, describing our data
requires that the poles be shifted from the noninteracting levels, which implies a nonzero 𝛿2(𝑝2).

Taking the Schur complement in the opposite way, we find that the possible values of
𝑝5 cot 𝛿2(𝑝2) are given by eigenvalues of

𝐵22(𝑝2) + 𝐵20(𝑝2)𝐵02(𝑝2)
𝑝 cot 𝛿0(𝑝2) − 𝐵00(𝑝2)

. (9)

As a first study, we fix 𝛿0(𝑝2) based on fits to other levels in trivial irreps. With this fixed, we find that
the excited state in frames (0, 1, 1) and (1, 1, 1) provides a good constraint on 𝛿2(𝑝2). Preliminary
results are shown in Fig. 6 for two ensembles, N202 and H200, with the same lattice spacing but
different volumes. The 𝐷-wave phase shift obtained from these levels is quite compatible with the
phase shift obtained from nontrivial irreps where 𝑆-wave does not contribute. Furthermore, these
levels are particularly useful because they have the smallest 𝑝2 and provide information closest to
the threshold. We also note that a nonrelativistic version of the analysis in Ref. [10] could help to
explain why these levels are primarily influenced by 𝐷 wave.
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Figure 7: Septenvigintuplet spectrum in trivial irreps. In addition to the dashed curves showing noninter-
acting octet-octet levels, we also show dash-dotted curves depicting noninteracting octet-decuplet levels.

5. 27-plet 𝑺-wave (preliminary)

The other SU(3) flavor irrep that appears only in the symmetric product of two octet baryons
is the 27-plet. This is particularly interesting because it contains the nucleon-nucleon isospin-one
channel, where some calculations using a single lattice spacing have reported a bound “dineutron”
state [11–14]. Here the inelastic threshold is lower, corresponding to 𝑚𝐵 +𝑚𝐷 , where 𝑚𝐵 and 𝑚𝐷
are the octet and decuplet baryon masses. Although the octet-decuplet channel could be included
in two-particle quantization conditions, we do not include the relevant octet-decuplet interpolating
operators; therefore, our usable range of spectrum is smaller in the 27-plet.

Preliminary estimates of the spectra in trivial irreps are shown in Fig. 7. Near threshold,
the downward shifts from noninteracting levels are considerably smaller than in the singlet sector,
rendering a bound state rather unlikely. Higher in the spectrum, the levels are shifted upward
from the noninteracting ones; this indicates that at some point the phase shift passes through zero.
Because of this, 𝑝 cot 𝛿0(𝑝2) cannot be well described by polynomials, and we are exploring other
fit forms such as rational functions. The absolute size of the discretization effects is perhaps a
bit smaller than in the singlet sector; however, since the shifts from noninteracting levels are also
smaller, the relative effect on the phase shift may still be large.

6. Conclusions

Using distillation, we are able to determine the low-lying spectrum of baryon-baryon states in
a variety of frames, irreps, and flavor channels, which can then be analyzed using finite-volume
quantization conditions. We have repeated this using several lattice ensembles with six different
lattice spacings, producing the first study of discretization effects in a multibaryon system. Our
results show a strong dependence on the lattice spacing, which makes it essential to include a

7
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continuum limit study: the binding energy of the 𝐻 dibaryon on our coarsest lattice spacing is about
7.5 times larger than in the continuum.

This work is currently being extended in two ways. First, we are studying other systems at
the SU(3)-symmetric point, in particular nucleon-nucleon scattering. Second, we are studying the
effect of SU(3) breaking and the approach to the physical point [15].
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