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1. Introduction

The ’t Hooft limit of QCD [1], that is, the limit of large number of colors, 𝑁c, is a simplification
of the theory of strong interactions. It captures most of the non-perturbative features of QCD, such
as asymptotic freedom, spontaneous chiral symmetry breaking, confinement, or the existence of
a low-energy spectrum of pseudo-Goldstone bosons. Moreover, it has proven to have predictive
power in the non-perturbative regime, and is often used in phenomenological approaches to QCD.

Several studies have addressed the Large 𝑁c limit via lattice simulations [2]. Particularly
interesting are questions where Large 𝑁c predictions seem to fail, such as non-leptonic kaon decays.
Intrinsic QCD effects in these processes at Large 𝑁c have been recently studied by our group [3],
finding that subleading 𝑁c corrections can naturally account for the discrepancy. However, final
state interactions might also be relevant and remain to be studied. Another interesting open question
is whether exotic states such as tetraquarks survive in the Large 𝑁c limit. Both these questions can
be explored studying scattering processes on the lattice.

In this talk we report the current state of our study of 𝜋𝜋 scattering at Large 𝑁c. We work in a
theory with 𝑁f = 4 degenerate quark flavors, for which seven different irreducible representations
(irreps) of SU(4)f exist [4]. We have focused on two of them:

• The 84-dimensional irrep, which is the analogous to the isospin-2 (𝐼 = 2) channel of SU(2)f.
A representative state for this channel is the well-known |𝜋+𝜋+〉.

• The 20-dimensional irrep, which only exists for 𝑁f ≥ 4 and is antisymmetric in quarks and
antiquarks. We refer to it as the 𝐴𝐴 channel. A representative state is

1
√

2
( |𝐷+

𝑠𝜋
+〉− |𝐷+𝐾+〉).

For these two channels, two-pion correlation functions are computed on the lattice as linear combi-
nations of the disconnected and connected quark contractions—see Fig. 1:

𝐶𝐼=2 = 2𝐷 − 2𝐶, 𝐶𝐴𝐴 = 2𝐷 + 2𝐶. (1)

From the lattice results, we extract scattering properties and match them to chiral perturbation
theory to constrain the Large 𝑁c scaling of the relevant low energy constants.

D C

Figure 1: Schematic representation of the disconnected (left) and connected (right) quark contractions
required to compute the two-pion correlators in the lattice for the 𝐼 = 2 and 𝐴𝐴 channels.

2. 𝜋𝜋 scattering in ChPT

Chiral perturbation theory (ChPT) is an effective theory that describes the low-energy behavior
of QCD in terms of the lightest non-singlet multiplet of mesons and a finite number of low-energy
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constants (LECs). These mesons are the pseudo-Goldstone bosons resulting from the pattern of
spontaneous chiral symmetry breaking of QCD, SU(𝑁f)L×SU(𝑁f)R →SU(𝑁f)V. ChPT has been
widely studied [5, 6] and in the case of degenerate quarks, 𝜋𝜋 scattering amplitudes are known up
to next-to-next-to-leading-order (NNLO) [4]. From these results, the (𝑠-wave) scattering lengths of
the two channels of interest for 𝑁f = 4 can be extracted at next-to-leading order (NLO):

𝑀𝜋𝑎
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, (2)
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, (3)

where 𝑀𝜋 and 𝐹𝜋 are the pion mass and decay constants, respectively, and 𝐿𝐼=2 and 𝐿𝐴𝐴 are linear
combinations of LECs. We can expand them as a power series in 𝑁c,

𝐿𝐼=2 = 𝑁c𝐿
(0) + 𝐿 (1)

𝐼=2 +O(𝑁−1
c ), 𝐿𝐴𝐴 = 𝑁c𝐿

(0) + 𝐿 (1)
𝐴𝐴

+O(𝑁−1
c ). (4)

Note that the leading dependence of both quantities is expected to be the same. Only leading and
subleading 𝑁c terms will be kept when matching lattice results to ChPT.

In the ’t Hooft limit, we must include singlet meson, the 𝜂′, in the effective theory. Its mass
originates from the explicit breaking of the U(1)A symmetry by the anomaly, which is suppressed
at Large 𝑁c. Thus, it becomes degenerate with the rest of mesons,

𝑀2
𝜂′ = 𝑀

2
𝜋 +

2𝑁f𝜒top

𝐹2
𝜋

Large 𝑁c−−−−−−→ 𝑀2
𝜋 +O(𝑁−1

c ). (5)

where 𝜒top is the topological susceptibility of pure Yang-Mills and 𝐹2
𝜋 ∼ O(𝑁c).

An extension of ChPT to Large 𝑁c has already been studied and is sometimes referred to as
Large 𝑁c or U(𝑁f) ChPT [7]. It includes the 𝜂′ in the pion matrix and 𝑁c in the counting scheme,
O(𝑚𝑞) ∼ O(𝑀2

𝜋) ∼ O(𝑝2) ∼ O(𝑁−1
c ), with 𝑚𝑞 the quark mass and 𝑝 the external momentum. As

a consequence, loop diagrams first enter the computations at NNLO.
Within this theory, we have computed the scattering amplitudes for both channels of interest at

NNLO. For 𝑁f = 4 the corresponding scattering lengths are:
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(7)

where 𝐾𝐼=2 and 𝐾𝐴𝐴 are combinations of SU(𝑁f) LECs and new ones from the U(𝑁f) theory. They
scale as O(𝑁2

c ) and only the leading dependence is considered as a fitting parameter when matching
to lattice results.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
0
9

𝜋𝜋 scattering at Large 𝑁c Jorge Baeza-Ballesteros

One can compare the results of SU(4) and U(4) ChPT. In Fig. 2 we represent the scattering
length in the 𝐼 = 2 channel for both theories and two values of 𝑁c. We have set 𝐾𝐼=2 = 0 for the
comparison and matched the values of the SU(4) and U(4) LECs using the 𝑀𝜂′ � 𝑀𝜋 limit. The
differences observed vary with 𝑁c as a result of two effects. First, the contribution from chiral
logarithms including the 𝜂′ increases as 𝑀𝜂′ approaches 𝑀𝜋 , but at the same time, the importance
of the NNLO corrections gets reduced with 𝑁c.
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M
π
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I
=
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Figure 2: Comparison between the SU(4) and U(4) ChPT one-loop predictions for the scattering length in
the 𝐼 = 2 channel for 𝑁c = 3 (green) and 𝑁c = 6 (pink). We have set 𝐾𝐼=2 = 0 and matched 𝐿 (1)

𝐼=2 between
both theories using the 𝑀𝜂′ � 𝑀𝜋 limit.

3. Finite-volume formalism

Lattice simulations allow one to obtain the energy spectrum of two pions in a finite volume.
It must then be related to infinite-volume scattering observables, such as the scattering amplitude.
This is done using Lüscher’s formalism [8]. For the lowest-energy state, the 𝑠-wave phase shift, 𝛿0,
can be related to the ground-state energy of two pions, 𝐸𝜋𝜋 , on a cubic box of side 𝐿, as

𝑘 cot 𝛿0 =
1
π𝐿

Z
(
𝐿𝑘

2π

)
, (8)

where 𝑘 is the center-of-mass (CM) momentum, defined from 𝐸𝜋𝜋 =

√︃
𝑘2 + 𝑀2

𝜋 , and Z is the
generalized Lüscher’s zeta function.

Near threshold, the energy shift of the ground state, Δ𝐸𝜋𝜋 = 𝐸𝜋𝜋 − 2𝑀𝜋 , can be expanded in
terms of the 𝑠-wave scattering length, 𝑎0, and effective range, 𝑟0, of the system.

Δ𝐸𝜋𝜋 = − 4π𝑎0

𝑀𝜋𝐿
3

[
1 + 𝑐1

(𝑎0
𝐿

)
+ 𝑐2

(𝑎0
𝐿

)2
+ 𝑐3

(𝑎0
𝐿

)3
+ 2π𝑟0𝑎0

𝐿3 + π𝑎0

𝑀2
𝜋𝐿

3

]
, (9)

where 𝑐1, 𝑐2 and 𝑐3 are known numerical constants. This result was first developed up to O(𝐿−5)
in Ref. [8], and the order O(𝐿−6) was later worked out in Ref. [9].
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4. Energy spectrum from lattice simulations

Our lattice ensembles have been generated using HiRep [10]. We have 17 ensembles with
𝑁c = 3 − 6 and lattice spacing 𝑎 = 0.075 fm. We have also produced 4 finer ensembles for 𝑁c = 3,
two with 𝑎 = 0.065 fm, and another two with 𝑎 = 0.059 fm, which are used to study discretization
effects. We used the Iwasaki gauge action with 𝑁f = 4 clover-improved Wilson fermions on the sea,
and two different regularizations for the valence sector:

• A unitary setup with improved Wilson fermions.

• A mixed-action setup at maximal twist.

Both are expected to show O(𝑎2) improvement and represent an extra handle to analyze possible
discretization effects, since they must coincide in the continuum. Moreover, the mixed-action setup
allows us to compute 𝐹𝜋 from the one-pion correlation function. A summary of the ensembles can
be found in Refs. [3, 11, 12].

In each ensemble, we compute the one- and two-pion correlators, 𝐶𝜋 and 𝐶𝜋𝜋 , respectively,
for both channels. We then obtain the ground state energy shift by fitting to the following ratio
function [13]:

𝑅(𝑡) = 𝐶𝜋𝜋 (𝑡 + 𝑎) − 𝐶𝜋𝜋 (𝑡 − 𝑎)
𝐶2

𝜋 (𝑡 + 𝑎) − 𝐶2
𝜋 (𝑡 − 𝑎)

𝑇 /2>𝑡�1
−−−−−−−→ 𝐴𝜋𝜋 [cosh(Δ𝐸𝜋𝜋 𝑡

′) + sinh(Δ𝐸𝜋𝜋 𝑡
′) coth(2𝑀𝜋 𝑡

′)] ,
(10)

where 𝐴𝜋𝜋 is a dimensionless amplitude, 𝑡 ′ = 𝑡 − 𝑇/2 and 𝑇 is the time extent of the lattice. Two
examples of the results of the fits are shown in Fig. 3 for different fitting ranges. The energy shifts
are extracted from where a plateau is observed.

5 10 15 20
tmin

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

0.0110

∆
E
I
=

2

(a) 𝐼 = 2-channel energy shift for a 𝑁c = 4 ensemble

4 6 8 10 12 14
tmin

−0.0105

−0.0100

−0.0095

−0.0090

−0.0085

−0.0080

∆
E
A
A

(b) 𝐴𝐴-channel energy shift for a 𝑁c = 6 ensemble

Figure 3: Energy shifts for different fitting ranges. The final result (blue) is extracted from the plateau.

For 𝑁c = 3, we study possible discretization effects. In Fig. 4 we compare between both
regularizations of the valence sector. We observe that discretization effects are small for the 𝐼 = 2
channel (left), while they are as big as ∼ 50% for the coarser ensembles in the 𝐴𝐴 channel (right),
and get reduced for decreasing 𝑎2. To better understand these effects, we perform a continuum
extrapolation for 𝑁c = 3 in the 𝐴𝐴 channel. We use 𝑘 cot 𝛿0 as our physical observable for this
analysis and proceed in three steps:
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(a) 𝐼 = 2 channel
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(b) 𝐴𝐴 channel

Figure 4: Dependence on the lattice spacing of the ratio between the energy shifts obtained for the unitary
Wilson and the mixed-action setups.

1. First, we extrapolate all data points to a fixed value of the CM momentum, 𝑘/𝑀𝜋 = −0.08.
We use the effective range expansion (ERE) and a prior for the effective range, 𝑀2

𝜋𝑎0𝑟0 ∈
[−5,−1], motivated by the LO prediction of ChPT,

𝑀2
𝜋𝑎0𝑟0

��
LO ChPT = −3 (𝐼 = 2 and 𝐴𝐴 channel). (11)

2. For each lattice spacing, we interpolate to a fixed value of the chiral parameter, 𝜉 =

𝑀2
𝜋/(4π𝐹𝜋)2 = 0.14.

3. Finally we do a constrained linear continuum extrapolation, as shown in Fig. 5.

0.000 0.001 0.002 0.003 0.004 0.005 0.006

a2/fm2

0.8

1.0

1.2

1.4

1.6

k M
π
co

tδ
0

Figure 5: Continuum extrapolation of the 𝑠-wave phase shift for 𝑁c = 3 in the 𝐴𝐴 channel. Results from
the unitary (blue squares) and the mixed-action (red dots) setup setups are fitted simultaneously with a
constrained common continuum limit.
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We observe that our results are consistent with a universal continuum limit and that O(𝑎2)
discretization effects are large for both regularizations. We decide to use the mixed-action results
for the following analysis and parametrize the discretization effects in the scattering amplitude as

Mlatt
𝐴𝐴 = Mcont

𝐴𝐴 + 𝑎2𝑊𝜉, (12)

which is inspired in a modification of ChPT that includes the effects of Wilson fermions and a
twisted mass [14, 15]. Here, 𝑊 is a linear combination of new LECs appearing in this theory and
obeys𝑊 ∼ O(1) in 𝑁c. It is treated as a fitting parameter when matching lattice results to ChPT.

5. Fits to ChPT

We now compare our results to ChPT to constrain the 𝑁c scaling of the LECs. First, Eq. (9)
is used to O(𝐿−5) to extract 𝑀𝜋𝑎0 from the energy spectra and do a simultaneous chiral and 𝑁c fit
to ChPT. The results are shown in Fig. 6 for both channels and both SU(4) and U(4) theories. In
the 𝐼 = 2 channel, none of them can explain the behavior of the most massive 𝑁c = 3 points, so we
exclude them from the fits. Our preliminary results for the LECs in the SU(4) case are:

𝐿𝐼=2/𝑁c × 103 = −0.11(4) − 1.43(16)/𝑁c, 𝜒2/dof = 1.00,

𝐿𝐴𝐴/𝑁c × 103 = −1.08(13) + 2.2(3)/𝑁c, 𝜒2/dof = 2.00,
(13)

and in U(4) ChPT:

𝐿𝐼=2/𝑁c × 103 = −0.10(7) − 1.29(16)/𝑁c, 𝜒2/dof = 0.94,

𝐿𝐴𝐴/𝑁c × 103 = −0.6(4) + 2.4(3)/𝑁c, 𝜒2/dof = 1.42.
(14)

For both the SU(4) and U(4) ChPT fits, there is some discrepancy between the leading dependence
of the LECs in both channels, which was expected to be the same.
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(a) 𝐼 = 2 channel. Points to the right of the dashed line
are not considered for the fit.
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(b) 𝐴𝐴 channel. Discretization effects are included as a
fitting parameter.

Figure 6: Preliminary results for the simultaneous chiral and 𝑁c fits of the scattering length to SU(4) (solid
line) and U(4) (dashed line) ChPT.
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We decide to study the possible impact of neglected higher-order terms in Eq. (9). The analysis
is represented for two ensembles, one for each channel, in Fig. 7. We compare the threshold
expansion to O(𝐿−5) (in red) and O(𝐿−6) (in green) using Eq. (11) for 𝑟0. The blue region depicts
the energy shift computed in the lattice and the points are the determinations of 𝑀𝜋𝑎0. We observe
that the 𝐼 = 2 channel shows good agreement between both truncation orders. However, this is not
the case for the 𝐴𝐴 channel for which convergence fails at large 𝜉 or small volume.
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(a) 𝐼 = 2 channel, 𝑁c = 3.
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(b) 𝐴𝐴 channel, 𝑁c = 3.

Figure 7: Comparison between the O(𝐿−5) (red) and O(𝐿−6) (green) threshold expansion—see Eq. (9).
The horizontal blue region is the ground-state energy shift from the lattice and points are the determinations
of the scattering length.
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(a) 𝐼 = 2 channel. Points to the right of the dashed line
are not considered for the fit.
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(b) 𝐴𝐴 channel. Discretization effects are included as a fitting
parameter.

Figure 8: Preliminary results for the simultaneous chiral and 𝑁c fits of the ground state energy shifts to U(4)
ChPT.

Because of this, we opt to use the full Lüscher’s formalism and perform a simultaneous chiral
and 𝑁c fit to the energy spectrum. The best fits to U(4) ChPT are shown in Fig. 8 for both channels.
From these we obtain the following preliminary results for the LECs:
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𝐿𝐼=2/𝑁c × 103 = −0.07(4) − 1.4(2)/𝑁c, 𝜒2/dof = 0.85,

𝐿𝐴𝐴/𝑁c × 103 = −0.9(2) + 2.6(6)/𝑁c, 𝜒2/dof = 1.34.
(15)

These values are similar to the ones obtained before from the fits to the scattering length. Still,
there is some tension between the leading 𝑁c contribution to the LECs.

6. Summary and outlook

In this talk, we have reported the current status of our study of 𝜋𝜋 scattering at Large 𝑁c.
We have analyzed the 𝑁c scaling of the scattering amplitudes in the 𝐼 = 2 and 𝐴𝐴 channels both
numerically, and in U(𝑁f) ChPT up to NNLO. From the comparison of both results, we have
extracted the leading and subleading 𝑁c dependence of the relevant LECs.

In future work, we intend to study other scattering channels and meson resonances. The 𝐼 = 0 is
very appealing due to the presence of the 𝜎 resonance and its contribution to final state interactions
in the 𝐾 → 𝜋𝜋 decay. However, some preliminary work has shown it is much more computationally
expensive. On the other hand, interactions in the 𝐴𝐴 channel analyzed in this work are attractive,
which may lead to the existence of exotic states at higher CM momentum.
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