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1. Introduction

Accurate measurement of the neutrino cross section is important for many topics in physics
such as reducing the background events in the rare decay measurement, or performing precision
measurement of the neutrino oscillation parameters. Well-controlled neutrino sources have become
available recently, and they are used to measure the most precise cross section for the neutrino-
nucleon scattering. Currently, the a# scattering is actively investigated in projects such as T2K
[1], MINERaA [2–4], and SciBooNE [5, 6]. However, the fully non-perturbative theoretical
computation of the total scattering cross section has never been done because it requires results
from all ranges of energy, and each of the processes in the different energy regime gives distinct and
significant challenges for the theoretical calculation of the scattering cross section for the process.

In the low energy regime, the quasi-elastic (QE) process is dominant for which one can use
the form factor decomposition. In an intermediate energy scale, the pion and other particles may
be generated possibly through resonance states, making it more complicated to analyze. In the
high scale, it gradually approaches the deep inelastic scattering (DIS) process, where one needs the
parton distribution function as well as the fragmentation function, but the factorization [7] of long-
and short-range interaction is not obvious, especially for higher twist contributions which become
relevant beyond the leading order of the operator product expansion (OPE). Such difficulties have
been an impediment one has to overcome to give a unified and consistent view on the process.

This process can be decribed by lattice QCD, on the other hand, from the first principles of QCD
in a consistent way over the whole regime [8]. We propose to use the Chebyshev approximation of
the kernel function, to perform the energy integral necessary to the sum over all possible final states
in the inelastic scatterings.

2. Inclusive scattering formalism

The formalism is outlined in Ref. [8, 9]. For the ℓ#-scattering process (Fig. 1), the total cross
section can be written as:

f =

∫
33q

∫
3l (l; q)d(l; q), (1)

while the lattice correlator is written as

� (C; q) =
∫ ∞

0
3ld(l; q)4−lC , (2)
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Figure 1: Nucleon-lepton scattering
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Figure 2: All allowed diagrams for 〈#�−�+#̄〉. Red ellipse is the source and the sink nucleon, ⊗ mean the
current insertion, and red and blue quark lines are the u and d quarks, respectively.

with the spectral function

d(l; q) ∝
∑
- (q)

X
(
l − �- (q)

)
|〈- (q) |� |#〉|2, (3)

where � is a local current to induce the scattering, �̂ is the Hamiltonian operator, and |#〉 is a
nucleon state. The sum runs over all possible states - (q) with a specified momentum q. We take
�̃ (q) ≡ ∑

x 4
−8q ·x� (x), is a Fourier transformed interpolator which carries a spatial momentum of

q. Then we approximate the integral in Eq. (1),∫
3l (l; q)d(l; q) ∝ 〈# |�̃ (−q) (�̂; q) �̃ (q) |# (0)〉, (4)

using the polynomial of 4−�̂ ,

 (�̂; q) ' :0(q) + :1(q)4−�̂ + :2(q)4−2�̂ + · · · + :# (q)4−# �̂ , (5)

which can be constructed using the correlator Eq. (2).

3. Contractions

In order to compute the forward Compton amplitude corresponding to the ℓ# scattering process,
we need the Wick contraction for the two current insertion with nucleon initial and final states. For
the charged current (CC) process 4? → a=, for example, the desired forward Compton scattering
amplitude can be written as below or represented as in the diagrams in Fig. 2:

〈=|�̃−` (−q) �̃+a (q) |?〉. (6)

We have implemented the current insertion of every combination for the lepton-nucleon scattering,
and any other channels can be analyzed with the same method. However, we focus on the CC
process only in this work.

The contraction for the two-current insertion requires due test. We compare the four-point
function results with the result from perturbed two-point functions. Let us consider the current with
an external field A`. The effective Lagrangian can be expressed:

Leff = LQCD + n1� (1)` A` + n2� (2)` A`, (7)
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Figure 3: (left) Real part and (right) Imaginary part of 〈%(C = 8)%̄(0)〉(n1, n2), where q = [001] in the
lattice unit.

where n1,2 are some small parameters. On this background field, we replace the Dirac operator /�
by

/� →
(
/� + n1Γ(1) + n2Γ(2)

)
(8)

The nucleon two-point function with given Lagrangian writes:

〈##̄〉?4AC. (n1, n2) = 〈##̄〉 + n1〈#� (1)#〉 + n2〈#� (2)#〉 + n1n2〈#� (1)� (2)#〉 +$ (n2
1 , n

2
2 ) (9)

Then, we take the derivative with respect to n1,2 of the perturbed nucleon two point functions, so
that we have the four-point functions.

lim
n1, n2→0

m2

mn1mn2
〈##̄〉(n1, n2) = 〈#� (1)` �

(2)
a #̄〉 (10)

A more detailed explanation can be found in the Ref. [8]. One can make a linear combination
of �2?C ’s to have only the relavant terms, n1n2�̃2?C . We compute the �2?C

00 (CB=: = 8, C1 = 5, C2 =

2, CBA2 = 0; q, p; n1, n2) in the perturbed two-point function method on the 163 × 32 lattice ensemble
for comparison (Fig. 3), where p, q were momenta insertion for the nucleon and the current to give
the four-point function 〈%(C = 8)�+0 (C1 = 5;−q)�−0 (C2 = 2; q)%̄(0)〉 after taking derivatives. The
values of n1,2 are given in between -0.05 and 0.05 with a separation of 0.01.

The slope of the Fig. 3 are −4.062220 × 10−10 and 3.154343 × 10−10 respectively, whereas
−4.062221× 10−10 and 3.154344× 10−10 are the real and imaginary part of the four-point function
values respectively.

4. Simulation

4.1 Lattice setup

We perform our QCD calculation on a RBC/UKQCD generated lattice ensemble [10] of size
163×32 using a heavier quark mass with chirally symmetric action. The V and the lattice cutoff (0−1)
is 2.13 and 1.73(3) GeV [10], respectively. The pion mass is 399(10) MeV and <c! is 3.69, and
the number of configurations are 139 and we take one exact sample per configuration. To reduce the
cost of simulation we use the "zMobius" fermion action of !B = 10. The renormalization constant
for the axial current is /� = 0.7162(2) [11] and we use the same value for the /+ considering the
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error margin of our calculation. For the source and the sink, interpolating operators are Gaussian
smeared with # = 70, U = 0.5625. In the simulation, the source-sink separation is fixed to 8, and
the first current is inserted at C = 2 slice.

4.2 Approximation of the kernel function

While the polynomial term of l consists of the kernel function, we implement the integration
range to the integrand using the step function so that the integration range of l is extended to the
infinity. Here, we define the smeared kernel function as a product of polynomial term inl, smeared
step function with a width f,

 ̄ ; (l) = 42lC0l; × \f (<# + |q| − l). (11)

The exact kernel function for the nucleon of mass 1.29 GeV at different orders of l in the
polynomial term (; = 0, 1, 2) and with different momentum insertion |q| = 2c

!
×
√
<, < = 1, 2, 3, 4

are approximated with smeared kernel functions of different smearing widths f = 0.2 GeV, 0.1
GeV, and 0.05 GeV (Fig. 4). For each of smeared kernel functions, we approximate with Chebyshev
polynomials at different orders, # = 3, 5, 10, and 15 (Fig. 5).

In the ℓ#-scattering process, the prefactor and the leptonic tensor combined are the kernel
function from the expression of the double differential cross sections,

32f

3&23l
=

�2
�
l

4c�2<#

!`a,
`a . (12)

The kernel function is then  `a =
�2

�
l

4c�2<#
!`a , where

!`a = 2[: ′`:a + :`: ′a − : ′ · :6`a + 8n`aUV:U: ′V] . (13)

Note that, the prefactor has additional term <4
,[

(l−<# ) 2−q2
] 2 for the EM current case because the

photon is massless unlike the,, / bosons.
For the kernel function, we use

 `a (l, q) =
�2

�
l

4c�2<#

!`a (�, q)

= �2
`a (l) ̄ ;=2(l) · l2 + �1

`a (l) ̄ ;=1(l) · l + �0
`a (l) ̄ ;=0(l). (14)

We take the Chebyshev polynomials,

 ̄ ; (l) '
2∗0(q)

2
+

#∑
9=1
2∗9 (q))∗

9 (I) (15)

where I = 4−l and )∗
9
’s are shifted Chebyshev polynomial. The coefficient for the approximation

of correlator are obtained by the formula

2∗9 (q) =
2
c

∫ c

0
3\ 

(
− ln

1 + cos \
2

; q
)

cos( 9\) (16)
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Figure 4: Smeared kernel functions of (Left column) ; = 0, (Center column) ; = 1, (Right column) ; = 2
with different insertion of momenta. Transfer momenta is |q| = 2c
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GeV (Right) f = 0.05 GeV at different orders # = {3, 5, 10, 15}. Narrow width requires higher order to be
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Figure 6: &2-differential cross section is investigated in model calculation (Bodek:2011 [12]), experimental
result (MINERvA [3]), and the lattice calculation (This study).

Thus, employing correlator values

�`a (C + 2C0)
�`a (2C0)

=
〈k` (q) |4−�̂ C |ka (q)〉

〈k` (q) |ka (q)〉
= 〈4−�̂ C〉 ∼ ÎC (17)

at each order we make a basis consisting of Chebyshev polynomial )∗
9
( Î). The maximum order of

Î is determined by the separation between two currents, which is C2 = {4, 5, 6} in our case.
Now, we consider all things together,

∫
3l ̄ ; (l)

∫
33P-

(2c)3

∑
- (P- )

X(l − �- (P- ) ) (2c)3X (3) (P- − q)

× 〈# |�` (−q) |- (%- )〉〈- (%- ) |�a (q) |#〉 (18)
= 〈# |�`

-
(−q) ̄ ; (�̂)�a. (q) |#〉 ≡ �

`a

-. ,;
(q), (19)

where -,. = {+, �}.

5. Result

We first compute all the �`a
-. ,;

values and take the linear combination. By combining Eq. (19)
and Eq. (14),

3f(�)
3&2 =

∑̀
,a,;

�;
`a �

`a

-. ,;
(q). (20)

The differential scattering cross section for the CC process ℓ? → a= is shown in the Fig. 6 as a
function of &2, together with the experimental data of the quasi-elastic cross sections [3, 12]. We
set the energy of the incoming neutrino as �a = 3.5 GeV.

Although the result in Fig. 6 looks reasonable, there are a few caveats about the computation.
First, the order of the Chebyshev approximation is only # = 3, because of the temporal size of the
lattice. The order of the Chebyshev approximation depends on the source-sink separation, and it is
limited by the temporal lattice size. The truncation at # = 3 in our simulation introduces $ (10−2)

7
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systematic errors when the uniform spectral function over the energy range of [0 GeV, 4 GeV]
is assumed. However, we do not have contribution from below the kinematic cut and the effect
of shifted peaks from the truncation is not well incorporated in this number. To investigate the
systematic errors in the approximation, a more detailed approach is needed.

The volume of the lattice ensemble is not enough to reproduce the bump in the differential cross
section in the low energy region. Larger spatial size of the lattice will allow finer configurations of
transfer momenta.

Another caveat is that the heavier nucleon of mass 1.29 GeV is used in the simulation, and our
result is subject to the chiral extrapolation and its systematic errors.

6. Discussion

This is the first application of the methodology to compute the inelastic ℓ# scattering process
[8]. A natural extension of this study is to perform calculations on larger volumes. It is crucial
to have enough separations between the two currents in order to better control the Chebyshev
approximation of the energy integral. Another extension is to approach the high energy regime by
setting the lepton energy higher. In principle, the same lattice result can be applied to analyze the
high energy process. Since the methodology deals with the energy integral, the 1-loop correction
to the nucleon V decay process, namely the ,W exchange contribution is also accessible with the
same set of the data, when it is organized differently in the Wick contraction level. In order to truly
evaluate the whole energy regime, employing the multigrid method with fine and coarse lattices
would be necessary.
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