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1. Introduction

Recent works have investigated the use of a particular class of deep generative machine learning
models, called normalizing flows, in lattice field theory [1–7] following similar approaches in
quantum chemistry [8–10] and statistical physics [11–13] (see also [14–17]). These works are
proof-of-principle demonstrations for simple two-dimensional field theories and aim to reduce
the integrated autocorrelation time for systems close to criticality by using the flow to generate
decorrelated field samples.

Another important application of flows was recently pointed out in [12]: they can directly
estimate the free energy of a lattice field theory (which can also be accomplished with methods such
as tensor networks, see, e.g., [18] and references therein). The free energy is important as it allows
to compute the entropy, pressure and the equation of state of the considered physical system. In the
case of Quantum Chromodynamics, such thermodynamic observables are of the utmost importance
in the physics of the early universe and are probed by heavy ion experiments [19].

In the following, we will review this deep-learning-based estimation technique of the free
energy and discuss the important issue of mode collapse. To illustrate the mode collapse of the
flow in a concrete example, consider a target density with two modes, as is the case for a quantum
mechanical particle in a double well potential or scalar 𝜙4-theory in the broken phase. The latter
example will be discussed in detail in Section 3.2. For both systems, the theory has a spontaneously
broken Z2 symmetry and thus two modes corresponding to the vacuum expectation values ±Φ. As
we will discuss in Section 2.1, the training process can however lead to a flow that only approximates
one mode of the target density of the lattice field theory and assigns (almost) vanishing probability
mass to the other [1, 6]. This will lead to systematic errors of the free energy estimate which can
be difficult to detect. In this contribution, we report on both mitigation and detection techniques
for such a mode collapse and demonstrate their effectiveness for the example of two-dimensional
scalar 𝜙4 theory.

2. Normalizing Flows

Let 𝑓 : M → N be an orientation-preserving diffeomorphism between two orientable 𝑛-
dimensional Riemannian manifoldsM andN . We assume that there is a probability measure 𝑞 d𝑉
defined onM where 𝑑𝑉 is the measure associated with volume form onM and 𝑞 :M → R+ is a
positive smooth map. In particular, it holds that

∫
M 𝑞 d𝑉 = 1. The push-forward measure 𝑓∗(𝑞 d𝑉)

is then a probability measure on N .
In coordinates (𝑥𝑖 ,𝑈) on N , the push-forward 𝑓∗(𝑞 d𝑉) takes the form

𝑞( 𝑓 −1(𝑥))
�� 𝑓 ′( 𝑓 −1(𝑥))

��−1 d𝑉 ( 𝑓 −1(𝑥)) ,

where | 𝑓 ′ | is the determinant of the Jacobian. In the machine learning literature, one therefore often
refers to

( 𝑓∗𝑞) (𝑥) ≡ 𝑞( 𝑓 −1(𝑥))
�� 𝑓 ′( 𝑓 −1(𝑥))

��−1 (1)

as the push-forward density of 𝑞.
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We will be interested in the caseM = N = R𝑛 since we will consider real-valued scalar fields.
The basic idea of a normalizing flow is to define a family of diffeomorphisms 𝑓𝜃 with parameters 𝜃.
We then adjust these parameters 𝜃 such that the push-forward density ( 𝑓𝜃 )∗𝑞 closely approximates
a certain target density 𝑝.

In practice, the diffeomorphism 𝑓𝜃 is parameterized by a deep neural network. Neural networks
are composite functions of the form

𝑚𝜃 : R𝑛 → R𝑛

𝑧 ↦→ 𝑚𝜃 (𝑧) , (2)

where 𝑚𝜃 (𝑧) = 𝑚𝐿 ◦ · · · ◦ 𝑚1(𝑧) is a composition of layers 𝑚𝑖 defined by

𝑚𝑖 (𝑧) = 𝜎(𝑊 𝑖𝑧 + 𝑏𝑖) ,

with weights 𝑊 𝑖 ∈ R𝑛,𝑛 and biases 𝑏𝑖 ∈ R𝑛 being the free parameters of the neural network, i.e.
𝜃 = {(𝑊 𝑖 , 𝑏𝑖)}𝐾

𝑖=1.1 Furthermore, 𝜎(𝑧) is a non-linear function, such as 𝜎(𝑧) = tanh(𝑧), which is
applied element-wise to each component of the vector 𝑊 𝑖𝑧 + 𝑏𝑖 ∈ R𝑛. A neural network is called
deep if the number of layers 𝐿 is large (although there is no clearly defined threshold).

There are various approaches for parameterizing diffeomorphisms by neural networks. We
will restrict to a particularly straightforward approach, called Non-linear Independent Component
Estimation (NICE), which splits the input 𝑧 = (𝑧𝑢, 𝑧𝑑) ∈ R𝑛 in two parts 𝑧𝑢 ∈ R𝑛−𝑘 and 𝑧𝑑 ∈ R𝑘
for given 𝑘 ∈ {1, 𝑛 − 1}. A diffeomorphism is then given by

𝑓𝜃 (𝑧) =
[
𝑓𝑢 (𝑧)
𝑓𝑑 (𝑧)

]
=

[
𝑧𝑢

𝑧𝑑 + 𝑚𝜃 (𝑧𝑢)

]
, (3)

where 𝑚𝜃 is a (not necessarily invertible) neural network of the form (2). Due to the splitting of the
input 𝑧, this can be easily inverted by[

𝑧𝑢

𝑧𝑑

]
=

[
𝑓𝑢

𝑓𝑑 − 𝑚𝜃 ( 𝑓𝑢)

]
.

For the NICE architecture, the determinant of the Jacobian is given by����𝜕 𝑓𝜃𝜕𝑥 ���� = ����� 𝜕 𝑓𝑢𝜕𝑧𝑢

𝜕 𝑓𝑢
𝜕𝑧𝑑

𝜕 𝑓𝑑
𝜕𝑧𝑢

𝜕 𝑓𝑑
𝜕𝑧𝑑

����� =
�����I 0
∗ I

����� = 1 .

As a result, the diffeomorphism 𝑓𝜃 is volume-preserving, i.e.
���d 𝑓𝜃d𝑧

��� = 1. In practice, we compose sev-
eral of these volume-preserving diffeomorphisms. This combination is again a volume-preserving
diffeomorphism because these maps form a group under composition.

A normalizing flow 𝑓𝜃∗𝑞 is typically chosen to be a push-forward of a simple base density, e.g.
𝑞 = N(0, 1). This allows for efficient sampling by first drawing 𝑧 ∼ N(0, 1) and then applying the
diffeomorphism 𝑓𝜃 to the sample 𝑧, i.e.

𝑓𝜃 (𝑧) ∼ 𝑓𝜃∗𝑞 , (4)

where the push-forward density 𝑓𝜃∗𝑞 is given by (1).

1We restrict to all weights and biases being of the same dimensionality since we will be interested in networks that
can be used to model invertible maps.
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2.1 Training of the Flow

A lattice field theory can be described by a probability density of the form

𝑝(𝜙) = 1
𝑍

exp(−𝑆(𝜙)) , (5)

where 𝜙, 𝑆 and 𝑍 denote the field, its action, and the partition function respectively.
A similarity measure between two densities 𝑝 and 𝑓𝜃∗𝑞 is given by the Kullback–Leibler (KL)
divergence

KL( 𝑓𝜃∗𝑞 | |𝑝) =
∫
D[𝜙] 𝑓𝜃∗𝑞(𝜙) log

(
𝑓𝜃∗𝑞(𝜙)
𝑝(𝜙)

)
. (6)

The KL divergence is non-negative and vanishes if and only if both densities are equal, i.e. 𝑝 = 𝑞.2
We can therefore train the flow to approximate the target density 𝑞 by minimizing this KL divergence
using gradient descent, i.e. 𝜃 ← 𝜃 − ∇𝜃KL( 𝑓𝜃∗𝑞 | |𝑝). For this, we observe that the KL divergence
can be rewritten as

KL( 𝑓𝜃∗𝑞 | |𝑝) = E𝜙∼ 𝑓𝜃∗𝑞 [𝑆(𝜙) + log ( 𝑓𝜃∗𝑞(𝜙))] + const. ,

where the last summand contains terms independent of 𝜃 and can thus be ignored for gradient
descent. We now sample from the flow to obtain its Monte-Carlo estimator, i.e.

KL( 𝑓𝜃∗𝑞 | |𝑝) ≈
1
𝑁

𝑁∑︁
𝑖=1
[𝑆(𝜙𝑖) + log ( 𝑓𝜃∗𝑞(𝜙𝑖))] + const. , 𝜙𝑖 ∼ 𝑓𝜃∗𝑞 .

The log probability can efficiently be calculated by (1). Additionally, we can very efficiently sample
from the flow by pushing forward samples from the base density, see (4). However, the training
of the flow may yield poor results for a multi-modal target density. This is because the training
relies on self-sampling. During training, self-sampling may lead to a collapse of almost all the
flow’s probability mass to a subset of the modes of the target density 𝑝. The KL divergence does
not penalize this behaviour since the flow does no longer produce samples from the other modes
of the target density 𝑝. We will discuss both detection and mitigation of mode collapse in the next
section.

3. Flow-based Estimation of Free Energy

A promising application of normalizing flows is estimating the free energy of a lattice field
theory at temperature 𝑇 defined by

𝐹 = −𝑇 log 𝑍 , (7)

where 𝑍 is the partion function. The temperature is given by 𝑇 = 1
𝑁𝑇𝑎

with lattice spacing 𝑎 and
𝑁𝑇 denoting the number of lattice points along the temporal direction of the lattice.

2We restrict to continuous densities here. Otherwise, the densities can have different values on a set of zero measure.
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3.1 MCMC-based Estimates of Free Energy

Estimating the free energy with MCMC is challenging. To illustrate this fact, we discuss a
reweighting procedure [20, 21] which starts from the observation that the difference in free energies
Δ𝐹𝑒 𝑏 = 𝐹𝑒 − 𝐹𝑏 = −𝑇 log( 𝑍𝑒

𝑍𝑏
) between two different points 𝑒 and 𝑏 in parameter space can be

calculated by

E𝑝𝑏

[
exp(−𝑆𝑒)
exp(−𝑆𝑏)

]
=

1
𝑍𝑏

∫
D[𝜙] 𝑒−𝑆𝑏 (𝜙) 𝑒

−𝑆𝑒 (𝜙)

𝑒−𝑆𝑏 (𝜙)
=
𝑍𝑒

𝑍𝑏
. (8)

This expectation value can be estimated by MCMC. If we choose the point 𝑏 in parameter space
such that the free energy 𝐹𝑏 can be calculated exactly or approximately, we can obtain the value of
the free energy at the point 𝑒 by 𝐹𝑒 = Δ𝐹𝑒 𝑏 + 𝐹𝑏.
In practice, the variance of the estimator (8) will become prohibitively large if the two distributions
𝑝𝑏 and 𝑝𝑒 have a small overlap. This can be avoided by choosing intermediate distributions
𝑝𝑖1 , . . . 𝑝𝑖𝐾 such that neighbouring distributions 𝑝𝑖𝑘 and 𝑝𝑖𝑘+1 overlap sufficiently. The free energy
difference can then be obtained by

Δ𝐹𝑒 𝑏 = Δ𝐹𝑒 𝑖𝐾 + Δ𝐹𝑖𝐾 𝑖𝐾−1 + · · · + Δ𝐹𝑖1 𝑏 . (9)

This comes at the price of an accumulated error of all free energy differences Δ𝐹𝑖𝑘 𝑖𝑘+1 . The error
therefore crucially depends on all points of the (discretized) trajectory connecting the points 𝑒 and
𝑏 in parameter space.

3.2 Example: Two-dimensional 𝜙4 Theory

This dependence on the trajectory can lead to serious problems, as we illustrate in a concrete
example of the 𝜙4 theory in two dimensions with the action

𝑆 =
∑︁
𝑥∈Λ
(−2𝜅

2∑̂︁
𝜇=1

𝜑(𝑥)𝜑(𝑥 + �̂�) + (1 − 2𝜆)𝜑(𝑥)2 + 𝜆 𝜑(𝑥)4) , (10)

where 𝜅 is the hopping parameter and 𝜆 denotes the bare coupling. For vanishing hopping parameter
𝜅, the free energy can be calculated analytically [1] and is given by

𝐹 (𝜆) = −|Λ| 𝑇 ln 𝑧(𝜆) ,

where |Λ| denotes the number of sites of the lattice Λ and

𝑧(𝜆) =
√︂

1 − 2𝜆
4𝜆

exp
(
(1 − 2𝜆)2

8𝜆

)
𝐾 1

4

(
(1 − 2𝜆)2

8𝜆

)
,

with 𝐾𝑛 being the Bessel function of the second kind.
As the hopping parameter 𝜅 is increased, spontaneous breaking of the Z2-symmetry 𝜙 → −𝜙

is observed. This is illustrated in Figure 1. Now, suppose we want to calculate the free energy with
MCMC for parameters in the broken phase, e.g. 𝜆𝑒 = 0.022 and 𝜅𝑒 = 0.5. We can then choose a
trajectory through parameter space for which the bare coupling is kept constant, i.e. 𝜆𝑖𝑘 = 0.022,
and the initial hopping parameter is 𝜅𝑏 = 0. We then increase the hopping parameter by a step size

5
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Figure 1: Left: absolute magnetization density ⟨ |𝜙 | ⟩|Λ | , where |Λ| denotes the number of lattice points, as a
function of the hopping parameter 𝜅 for the bare coupling 𝜆 = 0.022 on a 16 × 8 lattice. The values were
estimated with an overrelaxed HMC [22–25]. Right: contributions to the error from the HMC free energy
estimate at hopping parameter 𝜅 = 0.6 and bare coupling 𝜆 = 0.022 for a 16 × 8 lattice along the discretized
trajectory through parameter space. The width of a bar corresponds to the step size Δ𝜅. The area of a bar
shows the error of the corresponding free energy difference Δ𝐹 (calculated as described in [26]), i.e. the
total area of all bars is the total error of the free energy estimate 𝐹𝑒 at the target value 𝜅𝑒 = 0.6. Every chain
is four hundred thousands steps long with an overrelaxation every ten steps. Even for this relatively small
lattice, a significant contribution to the overall error comes from the region around the critical value of 𝜅.

Δ𝜅 = 0.05 up to 𝜅 = 0.2 and then use a smaller step size Δ𝜅 = 0.01 in order to ensure sufficient
overlap. Crucially, the estimate of the free energy in the broken phase will now suffer from critical
slowing down as the corresponding trajectory has to cross the phase transition in order to reach the
initial hopping parameter 𝜅𝑎 = 0. This will lead to a significant increase in the statistical error, see
Figure 1.

3.3 Flow-based Estimators of the Free Energy

Normalizing flows allow us to directly estimate the free energy 𝐹 = −𝑇 log(𝑍) at a given point
in parameter space and therefore allow us to avoid critical slowing down in the specific situations
discussed in the previous section. This can be seen by observing that we can estimate the partition
function 𝑍 using a trained flow in two different ways. Firstly, we can use samples from the flow

𝑍 = E𝜙∼ 𝑓𝜃∗𝑞

[
𝑒−𝑆 (𝜙)

𝑓𝜃∗𝑞(𝜙)

]
≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑒−𝑆 (𝜙𝑖)

𝑓𝜃∗𝑞(𝜙𝑖)
≡ �̂�𝑞 , 𝜙𝑖 ∼ 𝑓𝜃∗𝑞 .

Using this definition, we obtain the reverse estimator of the free energy by

�̂�𝑞 = −𝑇 log(�̂�𝑞) . (11)

Secondly, one can use samples from the target density 𝑝

𝑍−1 = E𝜙∼𝑝

[
𝑓𝜃∗𝑞(𝜙)
𝑒−𝑆 (𝜙)

]
≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑓𝜃∗𝑞(𝜙𝑖)
𝑒−𝑆 (𝜙𝑖)

≡ �̂�−1
𝑝 , 𝜙𝑖 ∼ 𝑝 .

to obtain the forward estimator

�̂�𝑝 = 𝑇 log(�̂�−1
𝑝 ) . (12)

6
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Figure 2: Left: estimation of the free energy using both the forward and reverse estimators. One of the flows
has mode-collapsed (purple) while the other is mode-covering (yellow). For the former case, this results in
a discrepancy in the free energy prediction of the two estimators while for the latter we obtain consistent
results. The MCMC reference values are estimated by the method described in Section 3.1. The mean
of MCMC estimate is shown by the solid line while the color band denotes the confidence interval of one
standard deviation. As the MCMC algorithm, we again use an HMC with overrelaxation. Right: histogram
of the magnetization obtained by direct sampling from both a mode-collapsed and mode-covering flow.

Both estimators have relative strengths and weaknesses. If we are confident that the flow closely
approximates the target density 𝑝, it is advisable to use the reverse estimator (12) because sampling
from the flow is more efficient. However, this estimator may lead to incorrect results if the flow is
mode-dropping. In contrast, the forward estimator �̂�𝑝 uses samples from 𝑝 and thus cannot neglect
any mode of the target density 𝑝. If mode-dropping is a risk (for example in the broken phase of
the 𝜙4-theory), one should therefore also use the forward estimator (12) as a consistency check.

4. Numerical Experiments

In the following, we will illustrate the difference in using the forward and the reverse variants
for the free energy estimation in the presence of mode-dropping. To this end, we consider two
normalizing flows trained for the two-dimensional scalar 𝜙4-theory for a hopping parameter of
𝜅 = 0.6 and a bare coupling of 𝜆 = 0.022 on a 𝑁𝑇 × 𝑁𝐿 = 16 × 8 lattice. The theory is thus
considered in its broken phase, see Figure 2. One of the flows is mode-collapsed on a single mode
of the target density 𝑝, while the other flow covers both modes, as can be seen on the right of
Figure 2.
For both flows, we then use the forward estimator �̂�𝑝 and reverse estimator �̂�𝑞 as defined in (12) and
(11) respectively. The estimated values for the free energy are visualized in Figure 2. For the mode-
collapsed flow, we see a clear discrepancy in the prediction while the mode-covering flow leads
to consistent values of the forward and reverse estimators. The fact that the forward estimator �̂�𝑞
gives the correct result for the mode-collapsed model can heuristically be understood by assuming
that the flow is approximately 𝑓𝜃∗𝑞(𝑥) ≈ 2𝑝(𝑥) for the covered modeM1 and 𝑓𝜃∗𝑞(𝑥) ≈ 0 for the

7
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other modeM2. This implies that

E𝜙∼𝑝

[
𝑓𝜃∗𝑞(𝜙)
𝑒−𝑆 (𝜙)

]
≈
∫
M1

𝑝(𝜙) 𝑓𝜃∗𝑞(𝜙)
𝑒−𝑆 (𝜙)︸    ︷︷    ︸
≈ 2
𝑍

+
∫
M2

𝑝(𝜙) 𝑓𝜃∗𝑞(𝜙)
𝑒−𝑆 (𝜙)︸    ︷︷    ︸
≈0

≈ 2
𝑍

∫
M1

𝑝(𝜙)︸     ︷︷     ︸
≈ 1

2

≈ 𝑍−1 . (13)

In summary, this experiment clearly illustrates that forward estimation of the free energy is crucial
in the presence of mode collapse.

5. Conclusion

Deep generative models, in particular normalizing flows, allow for a direct estimation of the
free energy. Current normalizing flow architectures are however far from perfect. For example,
they are challenging to train in the broken phase (particularly for larger lattices) and can suffer from
mode collapse for multi-modal densities. In this contribution, we have briefly outlined how forward
estimation of the free energy can help to mitigate this weakness.
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