
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
4
3

Improved analysis of nucleon isovector charges and
twist-2 matrix elements on CLS N f = 2 + 1 ensembles

Konstantin Ottnad,a,∗ Dalibor Djukanovic,b,c Tim Harris,d Harvey B. Meyer,a,b,c

Georg von Hippela and Hartmut Wittiga,b,c

aPRISMA+ Cluster of Excellence and Institut für Kernphysik, Johannes Gutenberg-Universität Mainz,
Johann-Joachim-Becher-Weg 45, 55099 Mainz, Germany

bHelmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
cGSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
dSchool of Physics and Astronomy, University of Edinburgh,
Peter Guthrie Tait Road, Edinburgh, EH9 3JZ, UK

E-mail: kottnad@uni-mainz.de

Preliminary results are presented for nucleon isovector charges and twist-2 matrix elements which
have been obtained employing an improved analysis strategy to deal with excited-state contami-
nation. The set of CLS Nf = 2 + 1 gauge ensembles in this study has been extended compared
to our 2018 calculation [1], including an ensemble at physical quark masses. Besides the addition
of new ensembles, the number of gauge configurations and measurements has been increased
on several of the existing ensembles and the analysis has been extended to include additional
source-sink separations. The ensembles cover a range of the light quark mass corresponding to
Mπ ≈ 0.130 MeV . . . 350 MeV, four values of the lattice spacing a ≈ 0.05 fm . . . 0.09 fm and a
large range of volumes. Results at the physical point are computed for each observable from a
combined chiral, continuum and finite-volume extrapolation.
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1. Introduction

In this contribution we report on an ongoing effort of the Mainz group to update and improve
our results for isovector nucleon charges and twist-2 matrix elements that have been published a
couple of years ago in Ref. [1] (see also Refs. [2, 3]). The changes and improvements include,
but are not limited to: additional gauge ensembles, lighter quark masses, larger statistics and a
different procedure to treat contamination from excited states. The latter becomes necessary as
the excited-state spectrum becomes more dense towards physical light quark mass, hence requiring
better control over the resulting contamination.

More explicitly, we aim at computing forward nucleon matrix elements at zero momentum
transfer with initial and final state produced at rest〈

N(s f )
��OX

µ1...µn |N(si)〉 = ū(s f )WX
µ1...µnu(si) , (1)

where u(si), ū(s f ) are Dirac spinors with initial (final) state spin si (s f ). For the operator insertion
we consider the quark isovector combination of local, dimension-three operators

OA
µ = q̄γµγ5q, OS = q̄q, OT

µν = q̄iσµνq , (2)

and the one-derivative, dimension-four operators

OvD
µν = q̄γ{µ

↔

Dν } q , OaD
µν = q̄γ{µ γ5

↔

Dν } q , OtD
µνρ = q̄σ[µ{ν ]

↔

D ρ} q , (3)

where
↔

Dµ=
1
2 (
→

Dµ −
←

Dµ) and the shorthands {...} and [...] denote symmetrization over indices with
subtraction of the trace and anti-symmetrization, respectively. The operator-dependent form factor
decompositions WX

µ1...µn take a simple form at zero momentum transfer and yield direct access to
the charges gu−d

A,S,T
and the average quark momentum fraction 〈x〉u−d as well as the helicity and

transversity moments 〈x〉∆u−∆d and 〈x〉δu−δd.
The lattice calculation of these matrix elements is carried out by computing appropriately

spin-projected two- and three-point functions C2pt(tsep) and CX
µ1...µn (tins, tsep), where X = A, S,T, ...

labels the operator insertion. Initial and final state are produced at rest in both cases. The relevant
Euclidean time separations are the source-sink separation tsep = t f − ti and the insertion time
tins = t − ti, where ti (t f ) denotes the source (sink) time and t the time position of the insertion. The
desired matrix elements are obtained at asymptotically large Euclidean time separations from the
ratio

RX(tins, tsep) =
CX
µ1...µn (tins, tsep)

C2pt(tsep)
, (4)

that is required to cancel unknown overlap factors. However, the time-separations tsep � 1 fm
that are needed to ensure ground state dominance are impossible to achieve even with state-of-
the-art lattice methods, hence the use of additional, dedicated techniques to reduce excited-state
contamination remains mandatory. Further details on the lattice setup and in particular changes
compared to the setup used in Ref. [1] concerning ensembles, statistics, available source-sink
separations etc. are detailed in section 2. Regarding our analysis strategy for taming excited states
we have implemented major changes over the previous study, and the subject is discussed in some
detail in section 3. The procedure for physical extrapolations, on the other hand, remains the same
as before and is only briefly explained in section 4 where preliminary results are given and some
future plans and directions are outlined.
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IDBC β T/a L/a Mπ/GeV MπL Nconf Nmeas tlo
sep/ fm thi

sep/ fm
C101o 3.40 96 48 0.2250(12) 4.73 2000 64000 0.35 1.38
H105o 3.40 96 32 0.2805(27) 3.93 1027 49296 0.35 1.38
H102o 3.40 96 32 0.3543(11) 4.96 2005 32080 0.35 1.38
D450p 3.46 128 64 0.2163(07) 5.35 500 64000 0.31 1.53
N451p 3.46 128 48 0.2860(05) 5.31 1011 129408 0.31 1.53
S400o 3.46 128 32 0.3496(11) 4.33 2873 45968 0.31 1.53
E250p 3.55 192 96 0.1299(09) 4.06 250 64000 0.26 1.41
D200o 3.55 128 64 0.2024(08) 4.22 2000 64000 0.26 1.41
N200o 3.55 128 48 0.2811(09) 4.39 1712 20544 0.26 1.41
S201o 3.55 128 32 0.2924(16) 3.05 2093 66976 0.26 1.41
N203o 3.55 128 48 0.3459(08) 5.41 1543 24688 0.26 1.41
J303o 3.70 192 64 0.2596(08) 4.19 1073 17168 0.20 1.40
N302o 3.70 128 48 0.3485(08) 4.22 2201 35216 0.20 1.40

Table 1: List of CLS gauge ensembles used in this work with the respective choice of boundary conditions
in time (“o”: open, “p”: periodic) and the values of β, T/a and L/a. The measured pion masses are
given in physical units. In addition, the values of MπL have been included, as well as the number of gauge
configurations Nconf and the number of measurements Nmeas which refers either to tsep ≥ 1 fm for ensembles
with open boundaries or to the largest value of tsep otherwise. The last two columns show the lower and
upper bound of the available source-sink separations tlo

sep and thi
sep in physical units.

2. Lattice setup

Our lattice simulations are carried out on gauge ensembles with Nf = 2 + 1 flavors of non-
perturbatively O(a)-improved Wilson quarks that have been generated by the Coordinated Lattice
Simulations (CLS) initiative [4]. The simulations employ the tree-level Symanzik gauge action and
a twisted mass regulator [5] to suppress exceptional configurations. The ensembles used in this
study are listed in Tab. 1. While most of them have been generated with open boundary conditions
(oBC) in time to reduce the effect of topological charge freezing [6] at finer lattice spacing, some
new ensembles with periodic boundary conditions (pBC) have been included as well.

2.1 Comparison with previous analysis

Compared to the analysis in Ref. [1] numerous changes have been implemented. First of all,
three ensembles with pBC have been added, i.e. D450, N451 and, most notably, the E250 ensemble
at physical quark masses. Note that N451 replaces N401 with a change of boundary conditions (i.e.
pBC vs oBC) while sharing the same simulation input parameters. Besides, correlation functions
on H102 have been recomputed to include twist-2 operator insertions making them consistently
available for all ensembles. As a byproduct we have increased effective statistics on H102 by a
factor of four at source-sink separations tsep ≥ 1 fm. Moreover, the number of gauge configurations
has been increased on ensembles D200, J303, N302 and S400 by up to a factor of two.

Another important change concerns the generation of three-point function data at values of
tsep < 1 fm. These are required for our excited-state analysis that will be explained in Section 3. In
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general, the smallest, available source-sink separation now corresponds to tsep/a = 4, and data for
all even values of tsep/a between tlo

sep and thi
sep have been computed, cf. Table 1. Triggered by the

inclusion of smaller values of tsep, we have modified the source setup used for the computation of
two- and three-point functions due to the expected exponential improvement of the signal-to-noise
ratio. This will be detailed in the next subsection, together with the strategy for ensembles with
pBC. Concerning additional source-sink separations, we have also added three-point function data
at tsep = 28a for J303, such that data up to tsep ≥ 1.4 fm are consistently available for all ensembles.

Finally, we remark that our procedure for renormalization remains unchanged. In particular,
we use ZA from the Schrödinger functional approach for the axial vector matrix elements at all four
values of β; cf. Refs. [7–9]. For the remainingmatrix elements we use the renormalization constants
that have been determined in Ref. [1] to which we also refer for further details and references.

2.2 Source setup and scaling of effective statistics

The computation of two- and three-point functions is carried out using the truncated solver
method [10–12] to reduce the computational cost by a factor of ∼ 2 to 3. This now includes H102
for which only exact solves had previously been available. For the oBC ensembles that have already
been used in Ref. [1] the three-point function data at tsep ≥ 1 fm has been generated on a fixed set of
source positions on a single timeslice in the bulk of the lattice, regardless of the actual value of tsep.
The resulting number of measurements is given in Table 1. However, keeping the same setup for
data at (much) smaller values of tsep would give them too much weight in fits. In order to remedy
this issue, the number of sources has been reduced by a factor of two for each or every second step in
decreasing tsep. The spatial source positions for these additional values of tsep have been randomly
drawn without replacement on a fixed timeslice for each configuration on oBC ensembles, subject
to the usual constraints caused by the combination of the truncated solver method and the SAP
preconditioning [13, 14]. In case of H102 the sources have been randomly sampled in the same
way also for tsep ≥ 1 fm, and we intend to keep this kind of setup for future runs on oBC ensembles
instead of using fixed source positions. An important side effect of scaling down the number of
sources at decreasing values of tsep is the reduction in computational cost compared to the setup
originally used for the production of data at tsep ≥ 1 fm with full statistics.

For pBC ensembles, on the other hand, the sources are randomly sampled from the entire lattice
volume and otherwise adhere to the previously mentioned constraints. In this case Nmeas refers to
thi
sep only, as we have scaled statistics down across the full range of source-sink separations, resulting
in an even smoother signal-to-noise behavior. In general, sampling the entire lattice volume allows
us one to place many more sources before saturation occurs, which explains the larger Nmeas/Nconf
on these ensembles. For example, on N451 the value of Nmeas has been increased by an order of
magnitude compared to N401 in Ref. [1], whereas Nconf has been increased by less than a factor of
two.

3. Excited state treatment

Excited states are typically the dominant systematic effect in lattice calculations of nucleon
matrix elements. This is caused by the exponential signal-to-noise problem that renders the use
of sufficiently large Euclidean time-separations impossible for computations of the ratio in Eq. (4)
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at reasonable computational cost. Therefore, various methods have been developed to achieve
additional suppression of contamination by excited states. For a recent review on the subject we
refer to Ref. [15]. In this study we focus on implementations of the summation method [16–18],
which we find to have several advantages over the simultaneous two-state fits that we have mainly
used in Ref. [1] when applied to our now extended and improved set of lattice data.

In order to obtain our summation method fit models, we take the expressions for the two-state
truncation of nucleon two- and three-point functions at vanishing momentum transfer, i.e.

C2pt(tsep) = |A0 |
2 e−m0tsep + |A1 |

2 e−m1tsep + ... , (5)

CX
µ1...µn (tins, tsep) =|A0 |

2M00e−m0tsep + A0 A∗1M01e−m0(tsep−tins)e−m1tins

+ A1 A∗0M10e−m1(tsep−tins)e−m0tins + |A1 |
2M11e−m1tsep + ... . (6)

and plug them into the ratio in Eq. (4), which yields

RX(tins, tsep) =
M00 + M01

A∗1
A∗0

e−∆tins + M01
A1
A0

e−∆(tsep−tins) + M11
|A1 |

2

|A0 |2
e−∆tsep

1 + |A1 |2

|A0 |2
e−∆tsep

, (7)

where the leading gap ∆ = m1−m0 has been introduced and we made use of the fact that M01 = M10
at zero-momentum transfer. The expression for the two-state truncation of the summed ratio
S(tsep, tex) =

∑tsep−tex
tins=tex

R(tins, tsep) is obtained from an expansion in e−∆tsep around zero and keeping
only terms up to and including O(e−∆tsep)

S(tsep, tex) =M00(tsep − 2tex + a) + 2M̃01
e−∆tex −

(
e∆(tex−a) +

|A1 |
2

|A0 |2
e−∆tex

)
e−∆tsep

1 − e−∆a

+ M̃11e−∆tsep(tsep − 2tex + a) +O(e−2∆tsep) . (8)

Here we have defined M̃01 = 2Re [A1/A0]M01 and M̃11 = |A1 |
2/|A0 |

2(M11 − M00). However, at
our current level of statistics we find that terms ∼ |A1 |

2

|A0 |2
are not constrained by the data. Therefore,

we decided to drop them, leading to our preferred fit model

S(tsep, tex = a) = M00(tsep − a) + 2M̃01
e−∆a − e−∆tsep

1 − e−∆a
. (9)

where we have set tex = a. The expression is fitted simultaneously in all six observables with ∆ as
a common fit parameter. For the lower bound of the fit range we demand Mπ tmin

sep ≥ 0.5, with tmin
sep

being further increased for ensembles with high statistics to achieve reasonable fit quality. A less
constraining variation of the two-state fit model is given by 1

S(tsep, tex = a) = a0 + a1(tsep − a) + a2e−∆tsep ; (10)

where c1 = M00 and c0 collects constant contribution from all higher states. This is similar to the
standard form of the summation method

S(tsep, tex = a) = b0 + b1(tsep − a) , (11)

1A fourth term ∼ e−∆tsep (tsep − 2tex + a) is again dropped as it is proportional to ∼ |A1 |
2

|A0 |2
.
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where b1 = M00. Unlike Eqs. (9), (10) the standard form of the summation method exhibits no
common parameters and is thus fitted to each observable individually. We include it for comparison
purposes and impose a more restrictive cut in tmin

sep , i.e. Mπ tmin
sep ≥ 0.7.

The summation-based approach has several features that make it an attractive alternative to e.g.
the simultaneous two-state ratio fit model that has been used in Ref. [1]

R(tins, tsep) = c0 + c1(e−∆tins − e−∆(tsep−tins)) + c2e−∆tsep .

where we have c0 = M00 and data are fitted simultaneously in tsep ≥ tmin
sep and tins ∈

[
tmin
ins , tsep/2

]
with

tmin
ins = tmin

sep /2. The leading correction is ofO(e−∆t
min
sep /2) in this model, while for the approach based

on the summation method it is ofO(e−∆tmin
sep ). This enhanced suppression is an important advantage

of the summation method as it allows to include more precise and / or numerically cheaper data
at smaller values of tsep, similar to what has been argued in ref. [19]. In particular, demanding
comparable suppression by imposing a constraint on tmin

ins yields Mπ tmin
ins ≥ 0.5 which is equivalent

to Mπ tmin
sep ≥ 1. On e.g. E250 this would imply tmin

sep ≈ 1.5 fm, effectively excluding all data from
the fit. Last but not least, the summation method fit models involve fewer degrees of freedom and
hence smaller covariance matrices, which greatly improves stability.
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Figure 1: Exemplary fits for the single- (upper row) and two-state (lower row) summation method on the
N451 ensemble, cf. Eqs. (11), (9). For the two-state summation method the corresponding fit has been
performed simultaneously across all six observables. Solid lines and fit bands indicate the range of tsep
values entering the fit, while dashed lines and light shaded parts of the fit bands represent an extrapolation.

In Fig. 1 exemplary fit results are shown on N451 for all six observables, together with the
resulting values of χ2/d.o.f.. As expected, the lattice data deviates from the standard summation
method result at small values of tsep in the upper two panels, whereas the two-state fit model in
Eq. (9) reproduces the curvature very well across all observables. However, we observe that there is
usually a drop in the resulting p-values below some value of tmin

sep , e.g. including the data at tsep = 4a
in Fig. 1 yields p = 0.0007 instead of p = 0.278. We stress again, that the two-state results in
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the lower row are from a single, simultaneous fit which greatly stabilizes the results for individual
observables. Furthermore, we find that the alternative fit model in Eq. (10) is less stable and hence
requires even smaller tmin

sep values (typically tmin
sep = 4a or 6a), but gives similar results otherwise.

4. Physical extrapolations and outlook

The physical extrapolation of the results on individual ensembles is currently performed in the
same way as in Ref. [1], i.e. using an ansatz for each observable O derived from a fit model inspired
by chiral perturbation theory,

O(Mπ, a, L) = AO + BOM2
π + COM2

π log Mπ + DOan(O) + EOM2
πe−MπL .

The power n(O) of the leading term in the continuum extrapolation is given by n = 2 for O = gu−d
A,S

and n = 1 for all other observables. All fits are done using binned jackknife and after applying
appropriate powers of the gradient flow scale t0/a2 introduced in Ref. [20] to build dimensionless
quantities. For the values of t0/a2 and further information on the scale setting procedure we refer
to Ref. [21] where also the physical value

√
8t0,phys = 0.415(4)stat(2)sys fm has been determined.

The latter enters our calculation only through the definition of the physical point, i.e. by fixing the
physical value of Mπ . The coefficientCO is known analytically for the axial charge, but fitting it as a
free parameter gives the wrong sign and introduces large cancellations with the term ∼ M2

π . This is
why for the time being we decided to omit the term in line with our old analysis, permitting a direct
comparison of the results. For the other observables with larger statistical uncertainties the term is
neglected as well. In general, the fits describe the data very well, which is reflected by the p-values
in Fig. 2. The upper two panels show the chiral and finite-volume extrapolation for gu−d

A
from fitting

Eq. (12) to the lattice data (gray symbols). Similar to what has been observed in Ref. [1] the axial
charge receives significant finite-volume corrections while the chiral and continuum extrapolations
turn out rather mild. In the lower left panel of Fig. 2 the chiral extrapolation is shown for gu−dT

which exhibits a flat behavior in all three extrapolations. Finally, as an example of a twist-2 matrix
element the chiral extrapolation for 〈x〉u−d is presented in the lower right panel. Here all three
extrapolations conspire to cause a sizable downwards shift of the physical result.

Preliminary physical results are given in Table 2 together with old results from Ref. [1]. We
find that the central value for gu−d

A
is larger compared to the result from the old analysis and agrees

very well with the experimental value gu−d
A,exp = 1.2724(23) [22]. On the other hand, the values of

the twist-2 matrix elements and in particular 〈x〉u−d are further decreased. These observations are
in line with the trend of the excited-state contamination observed in the effective form factors and
the results are in broad agreement with experiment. In general, we find that the two-state truncation
fit model in Eq. (9) gives results compatible with the standard summation method for the chosen
constraints on tmin

sep , i.e. tmin
sep Mπ ≥ 0.5 vs. tmin

sep Mπ ≥ 0.7, respectively. It is only for gu−dT that there
is some tension between the two models, i.e. the value from the two-state truncation is not within
the error of the standard summation method. All errors quoted in Table 2 are statistical only, and
they turn out similar for the two models, whereas they are reduced compared to the old analysis.

In the future, we plan to assess the systematic effects related to the physical extrapolations and
to revisit the aforementioned issue with the chiral logarithm at least for gu−d

A
. To this end, we intend

to add further ensembles at the edges of our simulation parameter space to gain even better control

7
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Figure 2: Chiral and finite volume extrapolation for gu−d
A

(upper row) and chiral extrapolations for gu−dT and
〈x〉u−d (lower row) obtained from fitting the model in Eq. (12), as described in the text. The gray symbols
represent the original lattice data, whereas the red data points have been corrected for the continuum and
infinite volume limit in case of the three chiral extrapolations, and for the chiral extrapolation and continuum
extrapolation in case of the upper right panel. Therefore, errors on the red points are strongly correlated.

gu−d
A

gu−d
S

gu−dT 〈x〉u−d 〈x〉∆u−∆d 〈x〉δu−δd
sum. 2-state 1.269(19) 1.124(96) 1.011(29) 0.139(18) 0.204(20) 0.184(23)
sum. 1-state 1.259(17) 1.055(95) 0.969(27) 0.136(11) 0.193(13) 0.182(15)
old analysis (2019) 1.242(25) 1.13(11) 0.965(38) 0.180(25) 0.221(25) 0.212(32)

Table 2: Preliminary, physical results for all six observables using data from a simultaneous fit of the two-
state truncation fit model in Eq. (9), the standard summation method, and the results from the old analysis in
Ref. [1]. All errors are statistical only.

for the individual terms in these fits. Moreover, we are still increasing statistics on E250, which we
expect to improve the chiral extrapolation by giving more statistical weight to the most chiral data
point. Concerning excited states we may further refine our analysis based on the summation method
by e.g. adding the missing, intermediate (“odd”) values of tsep/a on ensembles at the coarsest lattice
spacing to give a more fine grained control over tmin

sep .
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