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The persistent homology analysis has been widely used to investigate the phase structure and
the spatial structure based on the topological properties of the data space via the filtration of the
simplicial complex. In this talk, I explained how to apply the persistent homology analysis to the
QCD effectivemodel with heavy quarks; i.e., the effective Polyakov-linemodel and the Potts model
with the suitably tuned external magnetic field. In this proceedings, the Potts model results are
mainly shown. It is shown that the averaged birth-death time ratio has the same information with
the spatial averaged Polyakov-loop and the maximum birth-death time ratio has more information
than the averaged birth-death time ratio. Then, the peak structure near the first-order phase
transition point and the valley structure before the transition are clarified. In addition, the plateau
behavior is found between the first-order transition and the crossover.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:kashiwa@fit.ac.jp
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
4
6

Persistent homology analysis for QCD effective models Kouji Kashiwa

1. Introduction

Elucidating the nature of the phase structure of quantum chromodynamics (QCD) at finite tem-
perature ()) and the real quark chemical potential (`R) is one of interesting and important subjects
in elementary particle, hadron and nuclear physics. In the pure gauge limit where the quarks are
not dynamical, the Polyakov loop respecting the gauge invariant holonomy perfectly characterizes
the confinement-deconfinement transition; see Ref. [1]. In such case, the spontaneous breaking
of the center (Z#c) symmetry, where #c is the number of colors, can describe the confinement-
deconfinement phase transition and then the Polyakov loop becomes the order parameter of it.
However, the Polyakov loop is no longer the order parameter in the system with dynamical quarks
since the relation between the Polyakov loop and the one-quark excitation free energy is missed.
Because of the above fact, the confinement-deconfinement nature of QCD with the realistic quark
mass is still an open question; for example, see Ref. [2] for the recent proposed deconfinement
scenario at finite `R.

There are several different approaches to investigate the confinement-deconfinement nature.
One interesting approach is the topological order which is based on the topological properties
of states [3]; the confinement and deconfinement states can be clarified from the ground state
degeneracy at ) = 0 [4]. In the topological order, there are no classical order parameters which
can be used in the Ginzburg-Landau analysis and thus the spontaneous symmetry breaking is not
necessary; the ground state degeneracy in the compactified spaces plays a crucial role to clarify the
topologically ordered and disordered states. Unfortunately, the ground state degeneracy is difficult to
apply to the thermal system and thus it is not straightforward to investigate the thermal confinement-
deconfinement transition by using the topological order. Recently, the topology of the spacial
structure of configurations has been used to investigate the confinement-deconfinement nature
of QCD via the persistent homology [5, 6]. This approach has relation with the center clustering
structure and is expected to provide additional information of the confinement-deconfinement nature
via the spacial structure of configurations.

There are several studieswhich employ the persistent homology analysis to investigate the phase
transitions [7–10]. In these studies, the authors try to detect and investigate the phase transition
appearing in the condensed matter system. In addition, there are some other applications in several
research fields such as the string landscape and the structure of the universe [11, 12]. We work in
the same direction with Refs. [7–10]. This paper is organized as follows. In the next section 2, we
explain the formulation of the Potts model. Numerical results are shown in Sec. 3, and Sec. 4 is
devoted to the summary.

2. Formulation

In this study, we employ the Potts model with a suitable constructed external magnetic field.
First, we explain the formulation of the Potts model and after we show details of the persistent
homology analysis.
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2.1 Potts model

The energy of the standard Potts model with the external magnetic field is defined as

� = −^
∑

x

∑
i
X:x:x+i − ℎ

∑
x
:x, (1)

where ^ means the coupling constant, :x mean the Z3 valued spin degrees of freedom at each site
x, i means the three-dimensional unit vector and ℎ is the strength of the external magnetic field. In
this study, we allocate : = −1, 0 and 1 for the Z3 valued spin degrees of freedom. In this model, ^
is treated as the temperature-like quantity.

To make the Potts model as the QCD effective model with heavy quarks, we reconstruct the
external magnetic field as

� = −^
∑

x

∑
i
X:x:x+i −

∑
x

[
ℎ−Φx + ℎ+Φ̄x

]
, (2)

where the Polyakov loop (Φx), its conjugate (Φ̄x) and the external magnetic fields (ℎ∓) are defined
as

Φx = 4
2c8:x/3, Φ̄x = 4

−2c8:x/3, ℎ∓ = 4
−V ("∓`) , (3)

here V = 1/) is the inverse temperature, " is the quark mass and ` denotes the chemical potential;
see Refs. [13–15] for details of derivation about the present form of the external magnetic field.

However, the above Potts model has the sign problem and thus we here consider following
setup [6];

�iso = −^
∑
x,i
X:x:x+i −

∑
x

[
(ℎ+Φx + ℎ−Φ̄x) + (ℎ−Φx + ℎ+Φ̄x)

]
= −^

∑
x,i
X:x:x+i −

∑
x

[
ℎ+(Φx + Φ̄x) + ℎ−(Φx + Φ̄x)

]
= −^

∑
x,i
X:x:x+i − #f

∑
x

[
(ℎ+ + ℎ−) cos(Φx)

]
∈ R. (4)

where #f = 2 is the number of flavors. This setup is corresponding to the system with the isospin
chemical potential and thus there is no sign problem. Actually, there are the discussions that the
isospin chemical potential and the real quark chemical potential has the direct relation at least in
the large #c limit. Therefore, we can consider the isospin chemical potential is a good laboratory to
investigate the system with real quark chemical potential. Below, we call the Potts model (4) as the
QCD-like Potts model. In the QCD-like Potts model, ^ is treated as the temperature-like quantity
to control the behavior of the Polyakov loop.

The global information of the system can be seen from the spacial-averaged Polyakov-loop
with the configuration average defined as

Φ =

〈 1
#

∑
x
Φx

〉
, (5)

where # is the total number of sites and 〈· · · 〉 means the configuration averaging. Unfortunately,
this quantity can not show the spacial structure of the system because the spacial averaging is
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imposed. To overcome this point, we will consider the persistent homology as explained in the next
section.

We here summarize our numerical setup. The actual Potts spin configurations are obtained
by using the Metropolis method with V = 1/) = 1 and " = 10 for the !3 = 303 squared lattice
system. The one-spin flipping probability distribution is set to P = exp(−VΔ�) where Δ� is the
energy difference in one spin flipping process. We generates 1000 spin configurations for each !3

updation (1 Monte-Carlo step) after the thermalization. The following figures are taken from our
paper [6]. Statistical errors are estimated by using the Jack-knife method.

2.2 Persistent homology

One ofways to investigate the topology of the spacial structure of data is the persistent homology
analysis. The standard way to investigate the persistent homology is using the point cloud via the
filtration. We first divide the spin configuration to three data sets, namely the data set with : = −1,
0 and 1 spins; this means that if sites have : = 8 spin, where 8 = −1, 0, 1, such sites are "on" and
the others are set to "OFF", to each data set. After this procedure, we obtain the spacial nontrivial
structure which respects the spin degrees of freedom. Then, we can consider the filtration as
explained below;

• Consider balls whose centre is set to the "ON" cites for each data point (point cloud).

• The radius A for each ball is enlarged with increasing time (filtration).

• When the time passes sufficiently, the balls are started to overlap. We call this time when the
hole of the overlapped balls appear as birth time, C�

• After overlapping, the hole is finally vanished with increasing time. We call this time as
"death time", C� . Therefore, we have C� < C� .

Unfortunately, the above strict filtration is numerically difficult and thus the alpha complex is usually
employed to approximate it. In this study, we use the alpha complex for the filtration process; see
Ref. [5] for details as an example.

To see the global information of the system via the persistent homology analysis, the averaged
ratio of C� and C� defined as

' =

〈 1
#ℎ

∑
=

C=,�

C=,�

〉
, (6)

where the summation runs for all holes, = assigns each hole and #ℎ means the total number of holes
for one configuration. On the other hand, the maximum value of the ratio

'max =
〈
max

( C�
C�

)〉
, (7)

can rather responsible for the local information of the system because it is usually expected that data
appearing on the diagonal line of the persistent diagram can have the nontrivial spacial structure.
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Figure 1: Panels from the left to the right show the mean value of the spatial averaged Polyakov-loop, the
averaged birth-death time ratio and themaximum birth-death ratio on the `iso-^ plane, respectively. Statistical
errors are small and thus we do not show them here.

3. Numerical results

Panels from the right to left in Fig. 1 show the ^-dependence of the spatial averaged Polyakov-
loop (Φ), the averaged birth-death time ratio ('ave) and the maximum birth-death ratio ('max),
respectively. We can clearly see that Φ and ' shares the same tendency, but Φ and 'max does not.
This means that the relatively small hole structures which are perfectly neglected in the computation
of 'max are responsible to the global structure of the system as the same withΦ. On the other hand,
'max shows the more complicated behavior than '.

Figure 2 shows the snapshot of the center panel of Fig. 1. There is the valley structure before
the peal structure at small `iso. This may indicate the existence of the first-order transition and it
may be responsible to the clustering structure. Unfortunately, the present model does not have the
violation of the spectral positivity and thus clear inhomogeneities are not expected to be observed
after the configuration averaging procedure. We will discuss it in the future.

New results of the present study are that we can clarify the roles of the small and large spatial
hole structures appearing in each configuration via the point cloud approach to the confinement-
deconfinement phase transition. From above results, we can expect that the persistent homology
can surely detect the spatial structure of the configuration, and thus we can expect that it is useful
to explore the nontrivial spatial structure appearing in dense QCD.
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Figure 2: Panels from the left to the right show the ^-dependence of the spatial averaged Polyakov-loop, the
averaged birth-death time ratio and the maximum birth-death ratio, respectively. The open circle, diamond,
square and triangle symbols are results with `iso = 0, 6, 7 and 8, respectively. Lines are just eye guides.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
4
6

Persistent homology analysis for QCD effective models Kouji Kashiwa

4. Summary

In this study, we have employed the persistent homology analysis to investigate the confinement-
deconfinement nature of QCD by using the QCD effective model with heavy quarks; i.e. the Potts
model with a suitably constructed external magnetic field. Actually, we introduce the isospin
chemical potential to investigate the dense system.

We have clarified that the averaged the birth-death time ratio is clearly matched with the
behavior of the spatial averaged Polyakov-loop. Thus, this quantity is only responsible for the bulk
properties of the system. This means that the spatial small hole structure plays an important role in
the bulk properties. On the other hand, the maximum birth-death time ratio has more information
than the bulk properties.
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