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1. Introduction

When we put the fermion on the lattice, it is unavoidable to replace the derivative by the
difference of the forward and backward shifts, and introduce the fermion doubling problem. There
are various kinds of the discretized fermion action to solve or avoid the doubling problem: The
simplest solution is the Wilson action which adds a second order derivative term (Wilson term); and
the clover action add one more term to suppress the additional chiral symmetry breaking (A𝜒SB)
introduced by the Wilson term. The twisted-mass action multiplies a complex phase on the quark
mass term of the Wilson action to achieve a better suppression on A𝜒SB comparing to the clover
action case, while adding a clover term is still beneficial to suppress the residual discretization
errors. On the other hand, the staggered action maps the Dirac spinors to the lattice sites to weaken
the doubling problem, while introduces the taste degree of freedom which makes the data analysis to
be highly non-trivial. Finally, the overlap action (and the domain wall action as its approximation)
can be considered as ultimate solution to avoid A𝜒SB, while it can be much more expensive than
the other actions.

Even though all kinds of the actions should approach the same continuum limit, their dis-
cretization error can be quite different. Thus it is essential to compare the results with different
action at several lattice spacings, and have a trade-off between the statistical uncertainty and the
systematic ones. But most of the Lattice QCD software concentrates on one or two fermion actions
only, and then it can be quite non-trivial to switch the actions in the production and/or compare the
corresponding results. Thus it is very helpful if one can calculate fermion propagators for all the
actions in a given software, like Chroma.

The Chroma [1] package is an open-source Lattice QCD software at the level 4 of the USQCD
SciDAC modules, and targets an uniform interface of the various algorithms like the fermion and
gauge actions, solvers, and even monomial in HMC. At the same time, the QUDA [2–4] package
provides the GPU-accelerated inverter for most of the fermion action except the overlap action (but
most of the needed linear algebra operations are ready). Thus the missing pieces are just a Chroma
interface to call kinds of the QUDA inverter, and also an implementation of the overlap action.

Tag 6/𝑔2 𝐿 𝑇 𝑎(fm) 𝑚w
𝑞 𝑎 𝑐sw

MILC12 3.60 24 64 0.1213(9) -0.0695 1.0509
MILC09 3.78 32 96 0.0882(7) -0.0514 1.0424
MILC06 4.03 48 144 0.0574(5) -0.0398 1.0349

tag 6/𝑔2 𝐿 𝑇 𝑎(fm) 𝑚ov
𝑞 𝑎

RBC11 2.13 24 64 0.1105(3) 0.015
RBC08 2.25 32 64 0.0828(3) 0.011

Table 1: Informations of the MILC and RBC ensembles used in this work.

2. Numerical setup and results

In this proceeding, we present the performance of GPU-accelerated inverter based on QUDA
for three actions: Twisted-mass, HISQ and also overlap. The information of the gauge ensembles
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we used are summarized in Table 1. The node we used in this work include 32 CPU cores at 2 GHz
and 4 V100 GPUs.

2.1 Twisted-mass fermion

The twisted-mass fermion action is defined as the following

𝑆tw =
∑︁
𝑥,𝑦

𝜓̄(𝑥)𝐷𝑊 (𝑥, 𝑦;𝑚cri + 𝜔)𝜓(𝑥), (1)

where

𝐷𝑤 (𝑥, 𝑦;𝑚) = 1
2

∑︁
𝜇=1,...,4,𝜂=±

(1 + 𝜂𝛾𝜇)𝑈𝜇 (𝑥, 𝑥 + 𝜂𝑛̂𝜇𝑎)𝛿𝑦,𝑥+𝜂𝑛̂𝜇𝑎 − (4 + 𝑚)𝛿𝑥,𝑦 (2)

is the discretized /𝐷 of the Wilson action, 𝑚cri is the quark mass parameter to make the corresponding
pion mass to be zero, and 𝜔 is a complex number and corresponds to the degenerated twisted-mass
parameters. The standard Wilson action corresponds to the case with a real value of 𝜔, and a purely
imaginary 𝜔 will have an automatic O(𝑎) improvement and avoid the exceptional condition due
to the instability of the critical point. One can also add a clover term on the above action to get
twisted-mass clover fermion action,

𝑆twc = 𝑆tw + 𝑐sw𝜎𝜇𝜈𝐹
𝜇𝜈 (3)

which can further suppress the O(𝑎2) discretization errors.

Tag Ensembles 𝑚cri + 𝜔 Nodes Invertion Setup
CPU with BICGSTAB MILC06 -0.0398 9 6992s -
GPU with GCR MILC06 -0.0398 9 652s -
GPU with multigrid MILC06 -0.0398 9 99s 515s
GPU with multigrid MILC06 -0.044+0.005i 9 78s 154s

Table 2: The inverstion and setup time needed by a 12-column propagator in different cases with a similar
residual 10−6.

The QUDA interface of the twisted-mass action is quite similar to that of the clover one. The
only subtle issue is that the inverse of the clover term has a complex diagonal part and then can not
be packed for QUDA normally. Thus one would like to enable the dynamical-clover flag in QUDA,
and calculate the entire clover term (and its inverse) in QUDA directly.

The comparison of the time needed by a full propagator with 12 columns are summarized in
Table 2. Both the pion mass in the Clover and Twisted+clover cases are tuned to be about 300 MeV.
One can see that the standard GPU inverter with GCR algorithm is around 10 times further than
the CPU one with BICGSTAB algorithm, and the multi-grid inverter can be even faster, with the
cost of the reusable subspace setup. Comparing the clover fermion action, the time need by the
twisted-mass action is shorter with similar multi-grid parameters, especially during the setup.
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2.2 HISQ fermion

Another solution of the fermion doubling problem is the staggered fermion. With a redefinition
on the fermion field, we can obtain the staggered fermion action as the following,

𝑆st =
∑︁
𝑥

𝜓̄st(𝑥)
[1
2

∑︁
𝜇=1,...,4,𝜂=±

𝜂𝛾𝜇𝑈𝜇 (𝑥, 𝑥 + 𝜂𝑛̂𝜇𝑎)𝜓(𝑥 + 𝜂𝑛̂𝜇𝑎) − 𝑚
]
𝜓st(𝑥) (4)

where 𝜓st(𝑥) = 𝛾
𝑥4
4 𝛾

𝑥1
1 𝛾

𝑥2
2 𝛾

𝑥3
3 𝜓(𝑥) at the site 𝑥 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} in the MILC conversion. Note that

there is still 4 degrees of freedom which called taste, and the data analsysis with the taste mixing
can be much more complicated. The HISQ action is an improved staggered action which include
both the 1-step fat link (with certain smearing) and also 3-step long link [5].

One should be careful to compare the propagagor from the QUDA with that from the na-
tive Chroma HISQ inverter, since the Chroma HISQ action uses the CPS conversion 𝜓cps(𝑥) =

𝛾
𝑥1
1 𝛾

𝑥2
2 𝛾

𝑥3
3 𝛾

𝑥4
4 𝜓(𝑥), and has different sign on the mass term. Thus effectively two conversions can

be related with the following relation: 𝜓Chroma(𝑥) = (−1) (𝑡%2) ( (𝑥+𝑦+𝑧)%2)+(𝑥+𝑦+𝑧+𝑡)%2𝜓QUDA.
Similarly, we can see significant speed up of the GPU inverter comparing to the CPU one,

especially when we use fewer nodes to do the test on small lattices. For multigrid, we apply KD
Preconditioning [6].

The multigrid inverter requires very long time to generate the subspace, and the inverter is not
faster than the standard CG algrithm even after the subspace is generated. The parameters we use
are shown in Fig.1.

tag Ensembles 𝑚 Nodes Inverter Setup
CPU with CG MILC12 0.0102 1 523s -
GPU with CG MILC12 0.0102 1 17s -
GPU with multigrid MILC12 0.0102 1 26s 334s
CPU with CG MILC09 0.0074 3 1086s -
GPU with CG MILC09 0.0074 3 23s -
GPU with multigrid MILC09 0.0074 3 42s 311s

Table 3: The time needed by a 3-column HISQ propagator with either CPU or GPU inverter, on two
ensembles.

2.3 Overlap fermion

The solution to avoid the entire fermion doubling problem is the chiral fermion satisfying the
Ginsparg-Wilson relation, likes the overlap fermion,

𝑆ov =
∑︁
𝑥

𝜓̄(𝑥)𝐷ov(𝑥, 𝑦)𝜓(𝑦), (5)

where 𝐷𝑜𝑣 = 1
𝜌
(1 + 𝐷𝑤 (−𝜌)√

𝐷
†
𝑤 (−𝜌)𝐷𝑤 (−𝜌)

) with 𝜌 ∼ 1.5. The term 𝐷𝑤 (−𝜌)√
𝐷

†
𝑤 (−𝜌)𝐷𝑤 (−𝜌)

can be rewritten

into 𝛾5𝜖 (𝛾5𝐷𝑤 (−𝜌)), where 𝜖 (𝑥) is the sign function. Usually, we solve the smallest O(100-1000)
eigenvectors of 𝛾5𝐷𝑤 (−𝜌) at the accuracy 10−12 and obtain the sign function of this subspace
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Figure 1: The parameters for HISQ multigrid, most of which are copied from MILC interface.

explicitly, and use the Chebyshev polynomial likes what shown in Fig. 2 to approximate the sign
function of 𝛾5𝐷𝑤 (−𝜌) in the other subspace with the larger eigenvalues.

For the Chebyshev polynomial, we estimate the ranks with an empirical formula, set several
initial 𝑥 values and solve the equations of the coefficients to make the sign function at those values
to be exact. Of course the residual will not vanish at the other points, and we need to repeat the
procedure at the extreme points of the new polynomials until the precision goal is reached at the
new extreme points. Note that one should use use the Clenshaw recursion to define the Chebyshev
polynomial to suppress the round-off error.

In order to enhance the contribution from the low mode, the Chebyshev acceleration is also

5
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Figure 2: The sign function approximated by a Chebyshev polynomial with no more than 10−5 deviation.

used in the eigenvector solver. Note that the polynomial will change the eigenvalues of a matrix,
but its eigenvectors are kept unchanged.

One can apply the polynomial of a dslash several times on a random vector 𝑏 and obtain its
Krylov array.

𝑏, 𝐴𝑏, ..., 𝐴𝑘−1𝑏, (6)

For Arnoldi algorithm, we can get a Heisenberg matrix after the Schmidt orthogonalization

𝐴𝑄 =

(
𝐴𝑞1 𝐴𝑞2 · · · 𝐴𝑞𝑘

)
=

(
𝑞1 𝑞2 · · · 𝑞𝑘

) ©­­­­­­­«

ℎ1,1 ℎ1,2 ℎ1,3 · · · ℎ1,𝑘

ℎ2,1 ℎ2,2 ℎ2,3 · · · ℎ2,𝑘

0 ℎ3,2 ℎ3,3 · · · ℎ3,𝑘
...

. . .
. . .

. . .
...

0 · · · 0 ℎ𝑘,𝑘−1 ℎ𝑘,𝑘

ª®®®®®®®¬
. (7)

Eventually the eigenvectors can be obtained by diagonalizing the Heisenberg matrix. Note that we
can use the special QR factorization for Heisenberg matrix to suppress the round-off error. When
the amount of the eigenvector is large, the restart algorithm is essential to save the GPU memory
by the decrease of extra space.

As shown in Table 4, the GPU eigensolver can be much faster than the CPU one, on both the
ensembles. Our codes use the restarted Arnoldi algorithm which is similar to the algorithm in the
GWU-code.

tag Ensembles Number of eigenvectors Nodes time(Chroma) time(GWU-code)
CPU RBC11 200 1 8070s -
GPU RBC11 200 1 180s 225s
CPU RBC08 200 4 4704s -
GPU RBC08 200 4 281s 317s

Table 4: The time needed to generate the 200 eigenvalues of 𝛾5𝐷𝑤 with residual 10−15.
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tag Ensembles Number of eigenvectors Nodes time(Chroma) time(GWU-code)
CPU RBC11 200 1 >12h -
GPU RBC11 200 1 7384s 16110s
CPU RBC08 200 4 >12h -
GPU RBC08 200 4 8893s 14370s

Table 5: The time needed to generate the 200 eigenvalues of 𝐷𝐿/𝑅
𝑜𝑣 with residual 10−12.

Similarly we can solve the low lying eigenvectors of the 𝐷𝑜𝑣 to accelerate the inversion of
the overlap propagator. Since the 𝐷𝑜𝑣 is so-called gamma5 Hermite, we considered the projected
𝐷

𝐿/𝑅
𝑜𝑣 = (1 ± 𝛾5)𝐷𝑜𝑣 (1 ± 𝛾5) to make sure that the eigenvalues are real for the convergence of the

Arnoldi eigenslover and just solve the eigenvectors in the chiral sector with zero modes. In the end,
we reconstruct the full spinor.

As in Table 5, the overlap eigensolver based on QUDA can be faster than our previous one
using the GWU-code [7, 8]. On the RBC11 ensemble, 50 𝐷𝑤 operations take 0.088s in GWU-code
while just 0.025s in QUDA with 1 node, as we combine the 𝛾5 and 𝐷𝑤 operations into one kernel
to save the bandwidth in the QUDA code, and QUDA can take advantage from its auto-tuning. But
the cost of the vector operations are similar in both QUDA and GWU-code, thus the difference in
the eigensolver performance is smaller, especially in the 𝐻𝑤 one which spends fewer time in the
matrix operations. As a larger scale, the RBC08 ensemble uses 4 nodes and then the network has
much stronger impact on the performance, so the 𝐷𝑤 performance in two cases are relatively closer,
as 50 𝐷𝑤 take 0.148s in GWU-code and 0.087s in QUDA.

We also implemented the deflation [9] and multi-mass [10] algorithm for the overlap propagator
in Chroma to take the advantage of the overlap fermion definition. On the RBC11 ensembles, we
generate overlap propagators with the mass of 0.03, 0.05 and 0.10 within the residual 1e-8. It
takes 1150s in GWU-code while just 698s in QUDA with 1 node for the calculations. The RBC08
ensembles use 4 nodes and the speed up of the propagator solver is similar to that of 𝐷𝑜𝑣 eigensolver.
We choose the mass of the propagators as 0.03, 0.05 and 0.10 and the tolerance is set to be 1e-8.
The inversion takes 1133s in GWU-code and 903s in QUDA. The performance in two cases are
also closer.

3. Summary

In summary, we write the Chroma interfaces of the QUDA twist-mass and HISQ inverters, and
implemented the overlap fermion eigensolver and inverter based on the QUDA dslash kernel and
linear algebra operations. It turns out that the QUDA can provide significant speed up on the above
three actions with the uniform Chroma interface, while that the HISQ multigrid solver would not
be properly tuned and then require further efforts. It paves the way to compare the statistical and
systematic uncertainties of the same physical observable with different actions, with an uniform
environment.
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