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1. Introduction

In this work we study � = 0 quarkonium resonances using Lattice QCD string breaking poten-
tials (computed in [1] ). In our approach we use the diabatic extension of the Born-Oppenheimer
approximation and the unitary emergent wave method. In the first step of the Born-Oppenheimer
approximation heavy quarks are regarded as static color charges to compute the potential in presence
of two light quarks. In a second step these results are then used as an effective potential in the
Schroedinger equation of the heavy quarks. [2]
In the past this approach was already successfully applied to compute resonances for 1̄1̄@@-systems,
where @ denotes a light quark of flavor D/3 [3]. In this work, we investigate 1̄1@̄@-systems which
on the one hand are in general more complicated due to additional decay channels but on the other
hand there are experimental results available in this channel (e.g. Υ(=(),Υ(10860),Υ(11020)).
There have also been efforts to study the � = 1 isospin-channel in [4].

2. Coupled channel Schroedinger equation

In the following we will construct the Schroedinger equation for our scattering problem. We
consider two channels for now, a quarkonium channel &̄& and a heavy-light meson-meson channel
"̄" with " = &̄@.
We introduce the following quantum numbers:

• �%� : total angular momentum, parity and charge conjugation of the respective system.

• (%�
&/@ : spin of &̄&/@̄@ and corresponding parity and charge conjugation.

• �̃%� : total angular momentum excluding the heavy &̄& - spins and corresponding parity
and charge conjugation. (for Quarkonium �̃%� coincides with the orbital angular momentum
!%� of the two heavy quarks).

We consider heavy quark spins to be conserved quantities. Hence energy levels and other observ-
ables will not depend on (%�

&
. Note that, since �%� as well as (%�

&
are conserved, �̃%� is also

conserved.
In [8] we derived in detail the Schroedinger equation with a 4-component wave function k(r) =(
k&̄& (r), ®k"̄" (r)

)
. The first componentk&̄& (r) represents the &̄&-channel, while the three lower

components ®k"̄" (r) represent the spin-1 triplet of the "̄"-channel. The resulting Schroedinger
equation reads (

−1
2
`−1

(
m2
A +

2
A
mA −

L2

A2

)
++ (r) − �

)
k(r) = 0, (1)

where `−1 = diag(1/`&, 1/`" , 1/`" , 1/`" ) and

+ (r) =
(

+&̄& +mix(A) (1 ⊗ eA )
+mix(A) (eA ⊗ 1) +"̄", ‖ (A) (eA ⊗ eA ) ++"̄",⊥(A) (1 − eA ⊗ eA )

)
. (2)

+&̄&, +mix, +"̄", ‖ and +"̄",⊥ can be related to lattice results for static potentials from QCD.
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3. Static potentials from lattice QCD

In this section we briefly how the Lattice QCD string beaking potentials from [1] are computed.
Heavy quarks are treated as static quarks with frozen positions at 0 and r. One can write down
operators as trial states for a &̄&-pair and a meson-meson pair according to

O&&̄ = (Γ&)��
(
&̄�(0) * (0; r) &� (r)

)
(3)

O""̄ = (Γ&)�� (Γ@)��
(
&̄�(0) D� (0) D̄� (r) &� (r) + (D → 3)

)
(4)

One then computes the correlation matrix

� (C) =
(
〈O&&̄ |O&&̄〉* 〈O&&̄ |O""̄ 〉*
〈O""̄ |O&&̄〉* 〈O""̄ |O""̄ 〉*

)
=

©­­«
√
= 5

√
= 5 -= 5

ª®®¬ , (5)

The solid lines in Eqn. (5) correspond to gauge transporters while wiggly lines symbolize light
quark propagators. The first element of the correlation matrix is a Wilson loop, the off diagonal
elements are Wilson loops where one gauge transporter is replaced by a light quark propagator
and the last element consists of two more complicated diagrams, one connected and the other
one disconnected. From � (C) the potentials can be extracted in the limit of large Euclidean time
separations as

[� (C)]8 9 ∝
∑
:

0: (A)e−+: (A )C for C →∞. (6)

One can derive a relation between these +: (A) and +&̄& (A), +<8G (A) and +"̄" (A) according to

+&̄& = cos2(\ (A))+Σ
+
6

0 (A) + sin2(\ (A))+Σ
+
6

1 (A),

+"̄", ‖ (A) = sin2(\ (A))+Σ
+
6

0 (A) + cos2(\ (A))+Σ
+
6

1 (A),

+mix(A) = cos(\ (A)) sin(\ (A))
(
+
Σ+6
0 (A) ++

Σ+6
1 (A)

)
,

+"̄",⊥(A) = +Π
+
6 (A) = 0,

where +Σ
+
6

0 (A) denotes the ground state potential and +Σ
+
6

1 (A) its first excitation. In Fig. 1 we show
the data points for +&̄& (A), +<8G (A) and +"̄" (A) and appropriate parameterizations

+&̄& = �0 −
U

A
+ fA +

2∑
9=1
2&̄&, 9 A exp ©­«− A2

2_2
&̄&, 9

ª®¬ , (7)

+"̄", ‖ (A) = 0, (8)

+mix(A) =
2∑
9=1
2mix, 9 A exp

(
− A2

2_2
mix, 9

)
. (9)
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Figure 1: Potentials +&̄&, +"̄", ‖ (A) and +mix (A) as functions of &̄& separation A . The curves correspond
to the parameterizations (7) to (9) with parameters listed in Table 1.

potential parameter value
+&̄& (A) �0 −1.599(269) GeV

U +0.320(94)
f +0.253(035) GeV2

2&̄&,1 +0.826(882) GeV2

_&̄&,1 +0.964(47) GeV−1

2&̄&,2 +0.174(1.004) GeV2

_&̄&,2 +2.663(425) GeV−1

+"̄", ‖ (A) – –
+mix(A) 2mix,1 −0.988(32) GeV2

_mix,1 +0.982(18) GeV−1

2mix,2 −0.142(7) GeV2

_mix,2 +2.666(46) GeV−1

Table 1: The parameters of the potential parametrizations (7) to (9).

4. Scattering matrix for angular momentum �̃

We expand k(r) in terms of �̃ eigenfunctions and project the SE to definite angular momentum.
For �̃ > 0 we receive three coupled equations

©­­«− 1
2`
−1m2

A + 1
2A2 !

2
�̃
++�̃ (A) +

©­­«
�threshold 0 0

0 2<" 0
0 0 2<"

ª®®¬ + � 13×3
ª®®¬
©­­«

D �̃ (A)
j�̃−1→�̃ (A)
j�̃+1→�̃ (A)

ª®®¬ =
=

©­­«
+mix(A)

0
0

ª®®¬
(
U1 · �̃

2�̃+1 :A 9 �̃−1(:A) + U2 · �̃+1
2�̃+1 :A 9 �̃+1(:A)

)
, (10)
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with

`−1 = diag( 1/`&, 1/`" , 1/`" ), (11)
!2
�̃
= diag( �̃ (�̃ + 1), (�̃ − 1) �̃, (�̃ + 1) (�̃ + 2)) (12)

and

+�̃ (A) =

©­­­­«
+&̄& (A)

√
�̃

2�̃+1+mix(A)
√

�̃+1
2�̃+1+mix(A)√

�̃

2�̃+1+mix(A) 0 0)√
�̃+1

2�̃+1+mix(A) 0 0

ª®®®®¬
. (13)

The incoming wave can be any superposition of a �̄ (∗)� (∗) wave with ! = �̃−1 and a �̄ (∗)� (∗) wave
with ! = �̃ + 1. E. g. a pure incoming �̄ (∗)� (∗) wave with ! = �̃ − 1 translates to (U1, U2) = (1, 0).
The boundary conditions are the following:
For all cases

D �̃ (A) ∝ A �̃−1 and j!→�̃ (A) ∝ A!−1 for A → 0, (14)
D �̃ (A) = 0 for A →∞, (15)

for " = (1, 0)

j�̃−1→�̃ (A) = 8C �̃−1, �̃−1 :A ℎ
(1)
�̃−1
(:A), j�̃+1→�̃ (A) = 8C �̃−1, �̃+1 :A ℎ

(1)
�̃+1(:A) for A →∞,

(16)

and for " = (0, 1)

j�̃−1→�̃ (A) = 8C �̃+1, �̃−1 :A ℎ
(1)
�̃−1
(:A), j�̃+1→�̃ (A) = 8C �̃+1, �̃+1 :A ℎ

(1)
�̃+1(:A) for A →∞.

(17)

This defined the matrices )�̃ and ( �̃ ,

)�̃ =

(
C �̃−1, �̃−1 C �̃+1, �̃−1
C �̃−1, �̃+1 C �̃+1, �̃+1

)
, ( �̃ = 1 + 28)�̃ . (18)

Note that, the corresponding coupled channel Schroedinger equation for �̃ = 0 is obtained by
discarding the central equation of Eqn. (10). As a consequence, the scattering matrix in this case
is just a scalar C1,1.
We now computed the masses and decay widths of resonances by finding poles of )�̃ in the complex
energy plane. Unfortunately, the results show large discrepancies to the mass spectrum from
experiment. In order to improve our approach, we include an additional �̄ (∗)B �

(∗)
B -channel.

5. Extension by a �̄(∗)B �
(∗)
B -channel

In this approach we are able to compute meaningful results for energies between the �̄ (∗)� (∗) -
threshold of two parity negative mesons at 10.627 and the �̄ (∗)� (∗) -threshold of one parity negative

5
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and one parity positive meson at 11.020. The �̄ (∗)B �
(∗)
B -threshold of two parity negative mesons is

at 10.807, thus, we expect a significant improvement on our results when including an additional
�̄
(∗)
B �

(∗)
B -channel.

We use the same string breaking potentials from [1]. We expect this to be reasonable since the light
quark mass used in the lattice data is between the physical D/3 quark mass and the physical B quark
mass. As a consistency check we compared the eigenvalues of the resulting 3 × 3 potential matrix
for �̃ = 0 and found that they compare well to the three lowest energy level computed by a recent
lattice computation with a system of a heavy quark-antiquark pair and dynamical u, d and s quarks
[5]. For a more detailed discussion see our recent work [6].
The Schroedinger equation with the additional �̄ (∗)B �

(∗)
B -channel now reads(

1
2
`−1 m2

A +
1

2A2 !
2
�̃
++�̃ (A)+ (19)

+

©­­­­­­«

�threshold 0 0 0 0
0 2<" 0 0 0
0 0 2<" 0 0
0 0 0 2<"B

0
0 0 0 0 2<"B

ª®®®®®®¬
− � 15×5

ª®®®®®®¬
©­­­­­­«

D �̃ (A)
j"̄",�̃−1→�̃ (A)
j"̄",�̃+1→�̃ (A)
j"̄B"B , �̃−1→�̃ (A)
j"̄B"B , �̃+1→�̃ (A)

ª®®®®®®¬
=

=

©­­­­­­«

+mix(A)
0
0
0
0

ª®®®®®®¬
(
U"̄",1

�̃

2�̃ + 1
:A 9 �̃−1(:A) + U"̄",2

�̃ + 1
2�̃ + 1

:A 9 �̃+1(:A) +

+ U"̄B"B ,1
�̃

2�̃ + 1
:BA 9 �̃−1(:BA)/

√
2 + U"̄B"B ,2

�̃ + 1
2�̃ + 1

:BA 9 �̃+1(:BA)/
√

2
)
, (20)

where

`−1 = diag( 1/`&, 1/`" , 1/`" , 1/`"B
, 1/`"B

), (21)
!2
�̃
= diag( �̃ (�̃ + 1), (�̃ − 1) �̃, (�̃ + 1) (�̃ + 2), (�̃ − 1) �̃, (�̃ + 1) (�̃ + 2) ) (22)

and

+�̃ (A) =©­­­­­­­­­­­«

+&̄& (A)
√

�̃

2�̃+1+mix(A)
√

�̃+1
2�̃+1+mix(A) 1√

2

√
�̃

2�̃+1+mix(A) 1√
2

√
�̃+1

2�̃+1+mix(A)√
�̃

2�̃+1+mix(A) 0 0 0 0√
�̃+1

2�̃+1+mix(A) 0 0 0 0
1√
2

√
�̃

2�̃+1+mix(A) 0 0 0 0
1√
2

√
�̃+1

2�̃+1+mix(A) 0 0 0 0

ª®®®®®®®®®®®¬
.

(23)

With four linear independent choices of " = (U"̄",1, U"̄",2, U"̄B"B ,1, U"̄B"B ,2) and by choosing
appropriate boundary conditions analogously to Eqns. (14) to (17) we obtain a 4x4-scattering

6
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matrix

)�̃ =©­­­­«
C"̄",�̃−1;"̄",�̃−1 C"̄",�̃+1;"̄",�̃−1 C"̄B"B , �̃−1;"̄",�̃−1 C"̄B"B , �̃+1;"̄",�̃−1
C"̄",�̃−1;"̄",�̃+1 C"̄",�̃+1;"̄",�̃+1 C"̄B"B , �̃−1;"̄",�̃+1 C"̄B"B , �̃+1;"̄",�̃+1
C"̄",�̃−1;"̄B"B , �̃−1 C"̄",�̃+1;"̄B"B , �̃−1 C"̄B"B , �̃−1;"̄B"B , �̃−1 C"̄B"B , �̃+1;"̄B"B , �̃−1
C"̄",�̃−1;"̄B"B , �̃+1 C"̄",�̃+1;"̄B"B , �̃+1 C"̄B"B , �̃−1;"̄B"B , �̃+1 C"̄B"B , �̃+1;"̄B"B , �̃+1

ª®®®®¬
. (24)

Energies at which a component of )�̃ diverges can be related to masses and decay widths of
resonances.

6. Results

We consider the analytic continuation of our scattering problem into the complex energy plane,
where we search for poles in the of )�̃ by using a Newton-Raphson shooting algorithm. In Fig.
2 we show all poles of )�̃ up to energies of 11.2 GeV. To propagate the statistical errors of the
lattice data we generated 1000 statistically independent samples and repeated our computations
on each of the samples. For each bound state and resonance there is a differently colored dot
in Fig. 2 corresponding to one of the 1000 samples. Bound states are located on the real axis
below the �̄ (∗)� (∗) -threshold, while resonances are above this threshold and have a non-vanishing
imaginary part. The pole positions � of )�̃ are related to masses and decay width via < = Re(�)
and Γ = −2 Im(�).

In Table 2 we compare our results with experimentally found bound states and resonances. The
first 4 stateswefind for the S-wave (�̃ = 0) are reasonably close to themasses ofΥ(1(),Υ(2(),Υ(3()
and Υ(4(). Our resonance mass for = = 5 is quite similar to the experimental result for Υ(10753),
which was recently observed at Belle [7]. The next resonance (= = 6) also compares well with the
experimentally observed Υ(10860). For Υ(11020) on the other hand there is no match with our
theoretical results. The closest resonance we find (= = 7) is already in the region where our results
can not be trusted anymore.
For �̃ = 1 all the bound states we find are reasonably close to the experimentally observed states.
There are unfortunately no experimental results for resonances in this sector.
For the � wave we find a bound state (= = 1) very close to the experimentally observed Υ(1�).
The Υ(11020) resonance could also be a D-wave state but the closest resonance we find (= = 3) is
in the region where our results can not be trusted anymore.
For �̃ = 3 there are no experimentally observed states in this sector yet.
We expect, that our results still have systematic errors of the magnitude of 50-100 MeV. The main
error sources are neglecting heavy spin effects and �−�∗ mass splitting. We also lack more suitable
lattice QCD data for static potentials.

7. Conclusion

We found bound states and resonances for S, P, D and F wave bottomonium up to 11 GeVwhich
compare reasonably to the already experimentally observed states. In particular we obtained states

7
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Figure 2: Positions of the poles in the complex plane of )�̃ including the �̄ (∗)B �
(∗)
B -channel for all bound

states and resonances below 11.2 GeV for angular momentum �̃ = 0, 1, 2, 3. Colored point clouds represent
1000 resampled sets of lattice QCD correlators. Black points and bars indicate the mean values and errors.
The vertical dashed lines indicate the spin-averaged �̄ (∗)� (∗) - and �̄ (∗)B �

(∗)
B -thresholds at 10.627 GeV and

10.807 GeV respectively. The light blue shaded region above 11.025 GeVmarks the opening of the threshold
of one heavy-light meson with negative parity and another one with positive parity. Any results in this region
can not be trusted anymore.

that match the experimentally found resonances Υ(10750)BELLE II and Υ(10860). Unfortunately, we
were not able to make a statement, whether Υ(11020) is an S or D wave state yet. We were able
to make predictions for many bound states and resonances with �̃ > 0 which may be found in the
future by the experiment. Our long-term goal is to reduce systematic errors as much as possible to
be able to predict bound states and resonances for the experiment. Our next step will be to perform
a dedicated lattice QCD computation of the static potentials and the future we will also work on
including heavy spin effects and � − �∗ mass splitting.
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from poles of TJ̃ from experiment
J̃PC n Re(E)[GeV] Γ[MeV] name m[GeV] Γ[MeV] IG(JPC)

0++ 1 9.6181015 - ηb(1S) 9.399(2) 10(5) 0+(0+−)

Υb(1S) 9.460(0) ≈ 0 0−(1−−)

2 10.114711 - ηb(2S)BELLE 9.999(6) - 0+(0+−)

Υ(2S) 10.023(0) ≈ 0 0−(1−−)

3 10.44279 - Υ(3S) 10.355(1) ≈ 0 0−(1−−)

4 10.62911 49.3+5.4
−3.9 Υ(4S) 10.579(1) 21(3) 0−(1−−)

5 10.77312 15.9+2.9
−4.4 Υ(10750)BELLE II 10.753(7) 36(22) 0−(1−−)

6 10.93822 61.8+7.6
−8.0 Υ(10860) 10.890(3) 51(7) 0−(1−−)

7 11.04157 45.5+13.5
−8.2 Υ(11020) 10.993(1) 49(15) 0−(1−−)

1−− 1 9.93024352 - χb0(1P ) 9.859(1) - 0+(0++)

hb(1P ) 9.890(1) - ??(1+−)

χb1(1P ) 9.893(1) - 0+(1++)

χb2(1P ) 9.912(1) - 0+(2++)

2 10.31522940 - χb0(2P ) 10.233(1) - 0+(0++)

χb1(2P ) 10.255(1) - 0+(1++)

hb(2P )BELLE 10.260(2) - ??(1+−)

χb2(2P ) 10.267(1) - 0+(2++)

3 10.59443228 - χb1(3P ) 10.512(2) - 0+(0++)

4 10.86483721 67.5+5.1
−4.9

5 10.93213354 101.8+7.3
−5.1

6 11.14445275 25.0+1.1
−1.3

2++ 1 10.18093546 - Υ(1D) 10.164(2) - 0−(2−−)

2 10.48613236 -

3 11.03803044 40.8+2.0
−2.8

3−− 1 10.38982839 -

2 10.63883125 2.4+1.5
−0.9

3 10.94402029 46.84.66.2

4 11.17405169 1.9+2.1
−1.4

Table 2: Masses and decay widths for � = 0 bottomonium from the coupled channel Schroedinger equation
(20). For comparison we also list available experimental results. The �̄ (∗)� (∗) - and �̄ (∗)B �

(∗)
B -threshold are

marked by dashed lines. Errors on our results are purely statistical.
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