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It has long been known that there is a phase transition between confined and unconfined phases
of compact pure gauge QED on the lattice. In this work we report three manifestations of this
phase change as seen in the Landau gauge photon propagator, the static potential, and distribution
of Dirac Strings in the gauge fixed configurations. Each of these was calculated with large lattices
with volumes: 324, 484 and 964. We show that the confined phase manifests with a Yukawa type
propagator with a dynamically generated mass gap, a linearly increasing potential, and a significant
concentration of Dirac strings while the unconfined phase appears consistent with the continuum
results: a free propagator, a near constant long-distance potential, and a small concentration of
Dirac strings trending towards zero. Furthermore, the photon propagator is investigated in detail
near the transition between the two phases.
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Confinement/Deconfinement in 4D compact QED on the lattice Lee C. Loveridge

1. Introduction

The first major question is why we should study 𝑈 (1) or QED on the lattice. After all,
QED is fairly well understood in the free theory limit and interactions can be described well with
perturbation theory. However, 𝑈 (1) gauge theories are relevant to understand the Higgs sector
and many condensed matter problems. QED corrections to lattice QCD problems are becoming
increasingly important, and 𝑈 (1) gauge theories are a laboratory for modeling gauge theories on
quantum computers. The compact formulation of𝑈 (1) gauge theory on a lattice shows two different
phases that are associated with different values of the coupling constant. Our particular interest
here is to understand the "photon" propagator and the static potential in both a confining and a
deconfining phase.

2. Setup and Action

A compact lattice 𝑈 (1) gauge theory is set up in a very direct way. As with lattice QCD, the
action is the sum of the real part of plaquettes which in the continuum limit become the standard
Maxwell tensor composed of electric and magnetic fields. The action is

𝑆𝑊 (𝑈) = 𝛽
∑
𝑥

∑
1⩽𝜇,𝜈⩽4

{
1 −ℜ

[
𝑈𝜇𝜈 (𝑥)

]}
, 𝛽 = 1/𝑒2 (1)

where the plaquette 𝑈𝜇𝜈 (𝑥) is given by

𝑈𝜇𝜈 (𝑥) = 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + 𝑎 𝑒𝜇)𝑈†
𝜇 (𝑥 + 𝑎 𝑒𝜈)𝑈†

𝜈 (𝑥) (2)

and the links 𝑈𝜇 (𝑥) are defined as

𝑈𝜇 (𝑥) = exp
{
𝑖 𝑒 𝑎 𝐴𝜇

(
𝑥 + 𝑎

2
𝑒𝜇

)}
. (3)

We analyzed this theory using standard hybrid monte-carlo sampling.

3. Static Potential

Our first interesting result is in the static potential. Figure 1 shows a clear phase change in the
static potential between 𝛽 = 0.8 (𝑒2 = 1.25) and 𝛽 = 1.2 (𝑒2 = 0.83). In the low 𝛽 (large coupling)
regime, we see a potential that is rising linearly with distance, while at high 𝛽 (low coupling) we
see a potential that grows much more slowly with distance.

The strength of the linear part of the potential is characterized by a string tension 𝜎. In figure 2
we plot the low coupling string tension of the various lattice sizes from figure 1. The string tension
appears to approach zero as the size of the lattice increases. This suggests that the infinite volume
continuum limit may be a free field theory.

4. Photon Propagator in Landau Gauge

The photon propagator is given by the expectation value of photon field between two different
momentum states:

⟨𝐴𝜇 (𝑝1) 𝐴𝜇 (𝑝2)⟩ = 𝑉 𝛿(𝑝1 + 𝑝2) 𝐷𝜇𝜈 (𝑝1). (4)
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Figure 1: Static potential in the confined 𝛽 = 0.8 (left) and deconfined 𝛽 = 1.2 (right) states.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
1/L

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

σ 
a²

Figure 2: String tension in the infinite volume limit.

Before averaging the field values, we perform gauge shifts so that the propagator will be in the
Landau Gauge and take the following form:

𝐷𝜇𝜈 (𝑝) =
(
𝛿𝜇𝜈 −

𝑝𝜇𝑝𝜈

𝑝2

)
𝐷 (𝑝). (5)

There is some ambiguity in how we should recover the photon (𝐴𝜇) field from the lattice links

𝑈𝜇 (𝑥) = exp
{
𝑖 𝑒 𝑎 𝐴𝜇

(
𝑥 + 𝑎

2
𝑒𝜇

)}
. (6)

The simplest solution is what one might call the linear definition and follows the approach of
non-abelian gauge theories. We assume that the argument of the exponential is small, that our link
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𝑈𝜇 is nearly 1, i.e. the argument 𝑒𝑎𝐴𝜇 is nearly 0, and thus we can find the photon field by taking
the imaginary part of the configuration

𝐴𝜇

(
𝑥 + 𝑎

2
𝑒𝜇

)
=
𝑈𝜇 (𝑥) −𝑈†

𝜇 (𝑥)
2 𝑖

. (7)

This method is commonly used when studying 𝑆𝑈 (3) (QCD) on the lattice where there is a physical
scale and one can be certain that the argument of the exponent is small and the links are indeed
close to unity. Since we are exploring 𝑈 (1) with different coupling constants, we have no physical
scale and therefore cannot be sure that the argument is small.

We will instead use a logarithmic definition of 𝐴𝜇.

𝐴𝜇

(
𝑥 + 𝑎

2
𝑒𝜇

)
= −𝑖 ln

(
𝑈𝜇 (𝑥)

)
(8)

This definition is exact up to machine accuracy, but it is much harder as it requires taking a logarithm.
However, logarithms of 𝑈 (1)’s pure phase configurations are much simpler to take than logarithms
of 𝑆𝑈 (3)’s matrix configurations.

The two different definitions of the photon field require different gauge fixing formulations to
ensure orthogonality. For the linear definition (7), we maximize the functional

𝐹 [𝑈; 𝑔] = 1
𝑉 𝐷

∑
𝑥,𝜇

ℜ
[
𝑔(𝑥)𝑈𝜇 (𝑥) 𝑔†(𝑥 + 𝑎 𝑒𝜇)

]
, (9)

while for the logarithmic definition (8) we must maximize the functional

𝐹 [𝑈; 𝑔] = 1
𝑉 𝐷

∑
𝑥,𝜇

{
1 − 𝑎2𝑒2

[
𝐴
(𝑔)
𝜇

(
𝑥 + 𝑎

2
𝑒𝜇

)]2
}
. (10)

We achieved the best results by first maximizing the linear functional (9) and then maximizing the
logarithmic functional (10).

After gauge fixing and computing the photon propagator, we see that in the confined 𝛽 = 0.8
phase (figure 3 left), the propagator takes the standard form of a propagator with well defined mass:

𝑎2𝑒2𝐷 (𝑎2𝑝2) = 𝑧0

(𝑎𝑝)2 + (𝑎𝑚)2 . (11)

By contrast, in the deconfined 𝛽 = 1.2 phase (figure 3 right), the propagator appears to be
approaching that of a massless free photon:

𝑒2𝑎2𝐷 (𝑎2𝑝2) = 𝑍0

(𝑎 𝑝)2 + 𝑍1

(𝑎 𝑝)4 . (12)

The coefficient 𝑍1 is effectively a measure of how different our calculated propagator is from
a true massless propagator. If we compare the values of 𝑍0 and 𝑍1 as the lattice size increases, it is
clear that 𝑍0 is fairly stable while 𝑍1 approaches 0, suggesting that it is an artifact of the finite size
and spacing of the lattice.
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Figure 3: Confined 𝛽 = 0.8 (left) and deconfined 𝛽 = 1.2 (right) propagators.
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Figure 4: Coefficients 𝑍0 and 𝑍1 from equation 12 for different lattice sizes. Note that 𝑍0 is nearly constant
while 𝑍1 approaches 0 as the lattice size increases.

5. Causes and Nature of the Transition

We do not yet understand the cause of the phase transition. It may be a result of Dirac Strings
in the configurations. This is when the links of a plaquette make a full 2𝜋 rotation so that the log
of the plaquette differs from the total of the logs of the legs by a multiple 𝑚𝜇𝜈 of 2 𝜋:

𝑈𝜇𝜈 (𝑥) = exp
{
𝑖 𝑒 𝑎

(
Δ𝐴𝜇𝜈 (𝑥)

)}
; (13)

Δ𝐴𝜇𝜈 (𝑥) =
∑
loop

𝐴𝜇 +
2𝜋𝑚𝜇𝜈 (𝑥)

𝑒𝑎
. (14)
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Figure 5: Dirac Strings in the confined and deconfined phases.

The total of all such Dirac Strings appears to be gauge invariant, but they do move from one
plaquette to another or from one site to another in the gauge fixing process. We report here the
non-gauge invariant average number of strings per site:

𝑚 =
1

6𝑉

∑
𝑥,𝜇<𝜈

|𝑚𝜇𝜈 (𝑥) |.

This variable𝑚 is analogous to the magnetization observed in condensed matter via the Ising model.
Note from figure 5 that the average number of Dirac Strings is more than an order of magnitude

higher for the confined phase than for the deconfined phase. Furthermore, the average number of
strings appears to be independent of lattice size in the confined case but appears to be decreasing
with increased lattice size in the deconfined phase. This suggests that Dirac Strings may play a role
in the confined phase while being absent in the infinite size and continuum limit of the deconfined
phase.

A closer look at propagators for various values of 𝛽 suggests a first order transition between the
phases. Figure 6 shows photon propagators at various values of 𝛽. The upper row is the raw data
from the simulation while the lower row has been normalized so that all propagators have similar
high momentum behavior. It is clear that all of the low 𝛽 propagators show a massive behavior and
values under 10 at low momentum. By contrast, the large 𝛽 propagators have very large values at
low momentum, suggesting that they may be free propagators in the infinite volume limit.

Figure 7 shows just the zero momentum component of the propagator plotted versus 𝛽 for
the raw (left) and normalized (right) data. It is clear that this value changes by several orders of
magnitude in the neighborhood of 𝛽 = 1.0; note in particular, the near vertical slope at 𝛽 = 1.0125.
This suggests a first order transition between the confined and deconfined phases near 𝛽 = 1.0 with
the sharpest change at 𝛽 = 1.0125. More details can be found in [1] [2] and references therein.
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Figure 6: Photon propagators at various values of beta. The left collumn is raw data from the simulation
while the right has renormalized all data to have consistent behavior at large values of momentum.
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Figure 7: The zero momentum component of the photon propagator plotted versus 𝛽 for both the raw and
normalized data.
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