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Recently, the Budapest-Marseille-Wuppertal collaboration achieved sub-percent precision in the
evaluation of the lowest-order hadronic vacuum polarization contribution to the muon gµ − 2 [1].
At this level of precision, isospin-symmetric QCD is not sufficient. In this contribution we review
how QED and strong-isospin-breaking effects have been included in our work. Isospin breaking is
implemented by expanding the relevant correlation functions to second order in the electric charge
e and to first order in mu −md . The correction terms are then computed using isospin-symmetric
configurations. The choice of this approach allows us to better distribute the available computing
resources among the various contributions.
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1. Introduction

The anomalous magnetic moment of the muon, aµ = (gµ−2)/2, is nowmeasured to a precision
of 0.35 ppm, achieved by combining the recent measurement of the Fermilab E989 experiment [2]
with the previous result of the BNL E821 experiment [3]:

aExp
µ = 116592061(41) × 10−11. (1)

On the theoretical side, the uncertainty on aSM
µ is largely dominated by the lowest-order hadronic

vacuum polarization (LO-HVP) contribution, which accounts for more than 80% of the total
theoretical uncertainty and is currently known with a relative precision of 0.6% [4]. In order to
match the target experimental uncertainty of the Fermilab experiment (0.14 ppm), the LO-HVP
contribution must be computed with a relative precision of 0.2%.

had

Figure 1: LO-HVP contribution to aµ

A lattice computation at this level of precision cannot be performed using the isospin-symmetric
limit of QCD. The validity of the SU (2)V isospin symmetry in QCD relies on the fact that
δm/ΛQCD ≡ (md − mu)/ΛQCD ∼ 0.01, as well as on the small size of the fine structure con-
stant, α = e2/4π ∼ 1/137. Thus, strong-isospin-breaking (SIB) and QED effects become relevant
at the percent precision level, and cannot be neglected in a computation aiming at few permil
precision.

In our work [1], isospin-breaking (IB) effects are implemented by taking derivatives of
QCD+QED expectation values with respect to the bare parameters e and δm/ml, with ml ≡
1
2 (mu +md), and computing the resulting observables on isospin-symmetric configurations, as first
proposed in [5] and [6]. The rationale behind this choice is the possibility to optimally distribute
the computing resources among the various IB contributions. IB effects are included in all the
observables that enter our analysis: current-current correlators, meson masses needed to fix the
physical point, and scale setting. The procedure and some details of our calculation are summarized
in sections 2 and 3. Not only do we account for QED and strong isospin-breaking effects in our
results, we also perform a separation of isospin symmetric and isospin breaking contributions. This
separation is scheme dependent and requires a convention, which will be outlined in section 4.

2. Methodology

Our partition function for 1+1+1+1 staggered fermions is given by

Z =
∫

[dU]e−Sg [U]
∫

[dA]e−Sγ [A]
∏
f

det Mf [VUeieq f A,m f ]1/4 (2)
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where f = {u, d, s, c} and qf =
{

2
3,−

1
3,−

1
3,

2
3

}
. U , VU and Sg[U] represent the gluon field, the

smeared gluon field, and the corresponding gauge action (detailed in Sections 1 and 2 of the
Supplementary Information of [1]). The photon field A and action Sγ[A] are defined in the QEDL
scheme [7]. For convenience, we write the determinant of the fermionic staggered matrix as

dets[U, A; {m f }, {qf }, e] ≡
∏
f

det M1/4
f
, (3)

where the explicit form of the fermionic matrix Mf reads

Mf [W,m f ] =
∑
µ

Dµ[W ] + m f 1 with W = VUeieq f A. (4)

Consider now the observable X (e, δm), a function of e and δm. We define the derivatives

X0 = X (0, 0), X ′m = ml
∂X
∂δm

(0, 0), X ′1 ≡
∂X
∂e

(0, 0), X ′′2 ≡
1
2
∂2X
∂e2 (0, 0). (5)

To evaluate the expectation value of X (e, δm) to first order in the isospin-breaking parameters e2 and
δm, we expand X (e, δm) and the fermionic determinant in e and δm, including O(e2) and O(δm)
terms and omitting higher order terms, and evaluate each derivative in the isospin-symmetric limit
e2 = δm = 0. We also make a distinction between the valence charge ev, that appears in the
derivatives of the observable X (e, δm), and the sea charge es, that appears in the derivatives of the
fermionic determinant. Explicitly,

〈X〉 '

∫
[dU][dA]e−Sg e−Sγ dets0

(
1 + es

dets
′

1
dets0
+ e2

s
dets

′′

2
dets0

) (
X0 +

δm
ml

X ′m + evX
′

1 + e2
vX

′′

2

)
∫

[dU][dA]e−Sg e−Sγ dets0

(
1 + es

dets
′

1
dets0
+ e2

s
dets

′′

2
dets0

) (6)

= 〈X0〉0 +
δm
ml
〈X〉′m + e2

v〈X〉
′′
20 + eves〈X〉′′11 + e2

s〈X〉
′′
02 (7)

The five terms in (7) correspond to quark-connected (left) and quark-disconnected (right) contrac-
tions1:

〈X0〉0 = Z−1
0

∫
[dU]e−S[U]dets0 X0

〈X〉′m ≡
〈
X ′m

〉
0

〈X〉′′20 ≡
〈
X ′′2

〉
0

〈X〉′′11 ≡
〈
X ′1

dets′1
dets0

〉
0

〈X〉′′02 ≡
〈
[X0 − 〈X0〉0] dets′′2

dets0

〉
0

1 Black lines represent quark lines, gluons are implied and not pictured: in particular, disconnected quark loops are
to be understood as connected by gluons. The black dots are current insertions, as pictured in Figure 1. Blue circles are
sea-quark loops generated by the derivatives of dets, yellow lines are photons. The red square represents the insertion of
the SIB operator.
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Note that (7) is an expansion in bare parameters and not an IB decomposition of 〈X〉. The latter
requires us to define a suitable set of physical observables to separate the contributions, which will
be discussed in section 4.

Note also that dets′m = 0, which comes from the symmetry of dets under the exchange of
md = ml + δm/2 and mu = ml − δm/2 at es = 0. The first and second derivatives of dets with
respect to es are given by:

dets′1
dets0

=
∑
f

qf

4
Tr

{
M−1

f D[iAVU ]
}

(8)

dets′′2
dets0

=
1
2



(dets′1
dets0

)2

−
∑
f

q2
f

4
Tr

{
M−1

f D[iAVU ]M−1
f D[iAVU ]

}
−

∑
f

q2
f

4
Tr

{
M−1

f D[A2VU ]
}

(9)

Diagrammatically, dets′1/dets0 = , hence
〈
dets′′2 /dets0

〉
= 1

2

[
+ +

]
. In

the above calculations we have used ∂es det Mf = ∂es exp
(
Tr{ln Mf }

)
= det Mf Tr{M−1

f ∂es Mf }

and ∂es Mf = qf Dµ[iAVU exp(ieqf A)]. We refer to all es-dependent terms in the expansion of an
observable as dynamical QED contributions. We use random sources, a truncated solver method
[11, 12], and low-mode averaging [13, 14] to efficiently compute dets′1 and dets′′2 .

3. Computation of isospin-breaking derivatives

In this section we review how the isospin-breaking derivatives of the hadron masses and of the
current propagator have been computed in our work. Before going into the detail of each derivative,
let us introduce some useful notations and observations.

Current propagator. Given the generating functional Z[Aext] =
∫
... dets[U, A+Aext, {qf }, {m f }, e],

the conserved current propagator can be computed as

〈Jµx Jµ̄x̄〉/e2 ≡
1
e2

δ2 log Z
δAext

µ,x Aext
x̄µ̄

����Aext=0
=

〈∑
f

q2
f C

conn
µ,x,µ̄, x̄ (m f , eqf ) + Cdisc

µ,x,µ̄, x̄ + c.t .
〉
, (10)

where c.t . is a contact term that does not contribute to the observables of interest. The explicit form
of the other two terms is given by

Cconn
µ,x,µ̄, x̄ (m f , eqf ) ≡ −

1
4

Tr
{
M−1

f Dµ[iPxVUeieq f A]M−1
f Dµ̄[iPx̄VUeieq f A]

}
(11)

for the connected contraction, and

Cdisc
µ,x,µ̄, x̄ ≡

∑
f , f̄

qf q f̄ Iµ,x (m f , eqf )Iµ̄, x̄ (m f̄ , eq f̄ ) (12)

for the disconnected contraction, where

Iµ,x (m f , eqf ) ≡
1
4

Tr
{
M−1

f Dµ[iPxVUeieq f A]
}
. (13)

In the above calculations we have used δ det Mf /δAµ,x = det Mf Tr{M−1
f (δ Mf /δ Aµ,x )} and

δ Mf /δ Aµ,x = Dµ[iPxVU exp(ieqf A)], where Px is the projection operator, which sets to zero all

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
5
8

QED and strong-isospin-breaking corrections in the LO-HVP contribution to (gµ − 2) L. Parato

components of the argument of Dµ which are not at x. We further split the connected part in

Clight ≡ 4
9Cconn(mu,

2
3 e) + 1

9Cconn(md,−
1
3 e), (14)

Cstrange ≡ 1
9Cconn(ms,−

1
3 e), (15)

Ccharm ≡ 4
9Cconn(mc,

2
3 e). (16)

where we drop, for brevity, the Lorentz indices and the coordinates. With the same omission of
subscripts, we shorten (12) as Cdisc.

Note: when discussing isospin-breaking corrections to the current propagator, we consider the
contribution of the light and strange quarks only. Leading-order electromagnetic corrections to
Ccharm were computed in [15], whereas the effects of valence charm quarks on Cdisc were estimated
in [16]: on the coarsest lattice, they affect the result by a value much smaller than the statistical
error.

Hadron masses. We denote a hadron mass by M =M[〈H〉], whereM is the function needed to
extract the mass from the hadron propagator H . M is chosen such that the derivatives δM

δH can be
given in closed analytic form.

QEDL volume effects. In the computation of QED derivatives, hadron masses are affected by
O(1/L) volume effects, due to the QEDL scheme [17, 18]. The first two orders in 1/L are known
analytically and depend only on the mass M and electric charge Q of the hadron:

M (L) − M = −
(Qe)2c

8π

[
1
L
+

2
ML2 +O(L−3)

]
with c = 2.837297... (17)

Valence-valenceQEDeffects (aswell as SIB effects) are evaluated on a subset of the set of ensembles
of size L = 6 fm used for the main part of the computation, the isospin-symmetric one. Dynamical
QED effects are evaluated on a dedicated set of ensembles of size L = 3 fm. Measurements on
L = 3 fm boxes require one order magnitude less computer time than ones on L = 6 fm boxes,
for the same level of precision. On our coarsest lattice, at β = 3.700, all QED contributions are
computed in both volumes. Dynamical contributions M ′′11 and M ′′02 do not show statistically relevant
differences between results obtained in L = 3 fm and L = 6 fm boxes. Valence-valence derivatives
M ′′20, instead, show significant volume dependence (see Figure 2). M ′′20 terms are thus corrected
using the first two orders of (17).

3.1 Strong isospin-breaking derivatives: 〈X〉′m
[Clight]′m. The SIB derivative of the connected light current propagator is computed via insertion
of the operator corresponding to the mass derivative. Since the light propagator is noisy, we evaluate
[Cconn(κml, 0)]′m at multiples κ of the light-mass, with κ = 3, 5, 7, 9, 11. Then, we perform a chiral
extrapolation to κ = 1 to get [Clight]′m.

[Cdisc]′m. To compute the SIB derivative of the disconnected current propagator, we first observe
that

[Cdisc]′m ≡ ml
∂Cdisc

∂δm
����δm=e=0

= −
3
2

ml

∂Cdisc
0

∂ml
. (18)

The derivative ∂Cdisc
0 /∂ml is computed as a finite difference: it is sufficient to evaluate, another

light-trace with a slightly different ml. We use I (ml, 0) and I (0.9 ml, 0).

5
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Figure 9: Volume dependence of various electromagnetic contributions to the ⇡+ mass. For the valence-
valence contribution M 00

20 we apply an infinite-volume correction given by Equation (53). The valence-sea
M 00

11 and sea-sea M 00
02 contributions are multiplied by 1000 and 10 on the plot, respectively. The results

are obtained with the 4stout action at � = 3.7000.

isospin component meson #1 [fm] meson #2 [fm] omega #1 [fm] omega #2 [fm]
M0 2.0 . . . 3.5 2.5 . . . 4.0 1.4 . . . 2.0 1.5 . . . 2.1
M 00

20 1.5 . . . 3.0 2.0 . . . 3.5 1.2 . . . 2.0 1.3 . . . 2.1
M 0

m 1.5 . . . 3.0 2.0 . . . 3.5 � �
M 00

11,M
00
02 1.0 . . . 2.5 1.5 . . . 3.0 0.3 . . . 1.5 0.6 . . . 1.5

Table 9: Plateau fit ranges for di↵erent isospin-breaking components, for mesons and for the ⌦ baryon.

9 Isospin breaking: hadron masses

In this section we describe the procedure to obtain the isospin-breaking derivatives of a hadron mass M .
On certain ensembles we measure the hadron propagator H at four di↵erent values of isospin breaking:

H0, H+, H�, H�m. (47)

The first is measured at the isospin-symmetric point, the second/third with valence electric charge ev =

±p
4⇡↵⇤ and zero quark mass di↵erence �m = 0, and the fourth with ev = 0 and �m = 2ml

1�r
1+r

��
r=0.485

.
These allow to calculate finite di↵erences with respect to ev and �m, whereas the es derivatives can be
calculated exactly using the formulae in Equation (31). In these measurements both gluon and photon
fields are fixed to Coulomb gauge, for the former the gauge fixing procedure is applied after smearing.

We use the notation M[hHi] for the mass that is extracted from the hadron-propagator expectation
value hHi. At the isospin-symmetric point we have

M0 = M[hH0i0]. (48)

The QED, sea-sea, isospin-breaking component of the propagator, hHi0002, is given by Equation (31). Then
the derivative of the mass can be obtained by application of the chain rule:

M 00
02 =

�M[H]

�H

����
hH

0

i
0

hHi0002 =
�M[H]

�H

����
hH

0

i
0

⌧
(H0 � hH0i0)dets

00
2

dets0

�

0

, (49)

22

Figure 2: Volume dependence of QED contributions to the π+ mass at β = 3.7000. The red squares in the
upper pane correspond to M ′′20 corrected with (17). The valence-sea M ′′11 and sea-sea M ′′02 contributions are
multiplied by 1000 and 10 on the plot, respectively.

M′
m. The SIB derivative of the mass M of a hadron is computed as the finite difference

M ′m ≈
ml

δm
(M[〈Hδm〉0] −M[〈H0〉0]) (19)

where Hδm is the hadron propagator evaluated at δm = 2ml
1−r
1+r with r = mu

md
= 0.485 [8] and

ev = 0.

3.2 Electromagnetic valence-valence derivatives: 〈X〉′′20

The second derivative X ′′2 of an observable X (e, δm) can be computed as the finite difference
X ′′2 ≈

1
2ev [(X+ + X−) − 2X0], where X± ≡ X (±e∗, 0) and e∗ is the physical value of the electric

coupling. In the valence-valence case, QED is inserted as a stochasticU (1) field [9]. The statistical
noise contributes at order O(e), but it can be removed by averaging, for each gauge configuration,
the two evaluations performed at ±ev [10].

[Clight]′′20. To evaluate the valence-valence derivative of the connected light current propagator,
we compute Cconn(κml, 0) and Cconn(κml,±

1
3 e∗) for κ = 3, 5, 7, 9, 11, then we perform a chiral

extrapolation to κ = 1, as for [Clight]′m.

[Cstrange]′′20. To evaluate the valence-valence derivative of the connected strange current propaga-
tor, we compute Cconn(ms, 0) and Cconn(ms,±

1
3 e∗).

[Cdisc]′′20. The valence-valence derivative of the disconnected current propagator (12) can be
computed by rewriting the single contraction

∑
f qf Iµ,x (m f , eqf ) = 2

3 I (ml,
2
3 e) − 1

3 I (ml,−
1
3 e) −

1
3 I (ms,

1
3 e) as −2I (ml, 0)+2I (ml,

1
3 e)+ 1

3 I (ml,−
1
3 e)− 1

3 I (ms,
1
3 e), which equals the first expression

when expanding in e up to and including O(e2) terms. The computation of I (ml, 0), I (ml,±
1
3 e∗),

I (ms, 0), and I (ms,±
1
3 e∗) is thus sufficient to compute [Cdisc]′′20 as a linear combination of finite

differences.

6
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M′′
20. The valence-valence derivative of themass M of a hadron is computed as the finite difference

M ′′20 ≈
1

2e2
v

(M[〈H+〉0] +M[〈H−〉0] − 2M[〈H0〉0]) =
1
e2
v

(
M[ 1

2 〈H+ + H−〉0] −M[〈H0〉0]
)

(20)

and corrected for the finite-volume effects induced by the QEDL scheme, as mentioned above. Here
H± is the hadron propagator measured at δm = 0 and ev = ±e∗.

3.3 Electromagnetic valence-sea derivatives: 〈X〉′′11

Valence-sea contributions are evaluated as

〈X〉′′11 =

〈〈
X ′1

dets′1
dets0

〉
A

〉
U

, (21)

where the subscript A indicates an average over free photon fields, sampled from e−Sγ , and the
subscript U an average over dynamical gluon configurations. To estimate the first derivative
dets′1/dets0, we generate one photon field A for each gluon field U and ∼ 104 random vectors on
each (U, A) pair. X ′1 is evaluated as a finite difference: X ′1 ≈

1
2ev (X+ − X−).

M′′
11. The valence-sea derivative of the mass M of a hadron is given in the mixed form

M ′′11 =
δM

δH
����〈H++H−〉0

·

〈
H+ − H−

2ev

dets′1
dets0

〉
, (22)

with H± the hadron propagator evaluated at ±e∗ and δm = 0.

3.4 Electromagnetic sea-sea derivatives: 〈X〉′′02

Sea-sea contributions are evaluated as

〈X〉′′02 =

〈
[X0 − 〈X0〉U ]

〈dets′′2
dets0

〉
A

〉
U

. (23)

To estimate the second derivative dets′′2 /dets0, we generate ∼ 2000 photon fields for each gluon
field U, and 12 random sources for each photon field A.

M′′
02. The sea-sea derivative of the mass M of a hadron is given in the mixed form

M ′′02 =
δM

δH
����〈H0〉0

·

〈
(H0 − 〈H0〉)

dets′′2
dets0

〉
0
.

4. Isospin-breaking decomposition

Type-I fits (global fits). Our simulation has five bare QCD parameters that need to be fixed:
{a,ml, δm,ms, e}, plus the charm mass which is fixed by the strange mass via mc ≡ 11.85 ms.

Given the following definitions for lattice observables (left) and their physical values (right),
that can be obtained from the PDG [19],




M2
πχ

≡ 1
2 (M2

uu + M2
dd

)

M2
Kχ

≡ 1
2

(
M2

ds
+ M2

us − M2
ud

)
∆M2

K ≡ M2
ds
− M2

us




[M2
πχ

]∗ ≈ [M2
π0]∗

[M2
Kχ

]∗ ≡ 1
2

(
[M2

K0
]∗ + [M2

K+
]∗ − [M2

π+
]∗
)

[∆M2
K ]∗ ≡ [M2

K0
]∗ − [M2

K+
]∗

(24)

7
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(with mesons Muu and Mdd defined below), a possible way of interpolating to the physical point
is to set a using the Ω− baryon mass MΩ− , the electric charges to ev ≡ es ≡ e∗ =

√
4πα∗ (with

α∗ the experimental value of the fine structure constant, a choice that is valid at leading order in
isospin-breaking), and to fix the quark masses by studying the dependence of the observables of
interest on M2

πχ
, M2

Kχ
and ∆M2

K around their physical values:




a = (aMΩ− )/[MΩ−]∗
(Xvv ≡ e2

v) = (Xvs ≡ eves) = (Xss ≡ e2
s ) = 4πα∗

ml | Xl ≡
M2

πχ

M2
Ω

−
[M2

πχ ]∗
M2
Ω∗

scatters around 0

ms | Xs ≡
M2

Kχ

M2
Ω

−
[M2

Kχ
]∗

M2
Ω∗

scatters around 0

δm | Xδm ≡
∆M2

K

M2
Ω

scatters around [∆M2
K ]∗

[M2
Ω

]∗

(25)

The specific values of ml,ms and δm are chosen to be slightly different on each ensemble, such
that, altogether, the various measurements bracket the physical point. Thus, one can proceed by
parametrizing an observable of interest O with a linear function:

O = f ({X }, A, B, ...) ≡ A + BXl + CXs + DXδm + EXvv + FXvs + GXss, (26)

where the fit coefficients A, B,C, F,G are polynomials in a2, while D and E can also depend on Xl

and Xs. For example, A = A0 + A2a2 + A4a4. The continuum extrapolation is then given by

O∗ = A0 + D0[Xδm]∗ + (E0 + F0 + G0)e2
∗ . (27)

This kind of parametrization, with experimentally measurable quantities as input, is referred
as type-I (see Section 3 of [21] or Section 20 of [1] for more details). It is not suitable for an
isospin-breaking decomposition (note for example that the observable most sensitive to strong-
isospin-breaking effects, ∆M2

K , is also charged).

Type-II fits (decomposition-friendly parametrization). We introduce a second parametrization
in order to obtain the decomposition of observables into isospin-symmetric and isospin-breaking
parts. We fix the bare parameters {a,ml, δm,ms, e} by a new set of observables that we impose to
be equal in the isospin-symmetric and full QED+QCD theory:




a = [w0]∗/(w0/a)

(X̃vv ≡ e2
v) = (X̃vs ≡ eves) = (X̃ss ≡ e2

s ) = 4πα∗
ml | X̃l ≡ M2

πχ
w2

0 − [M2
πχ
w2

0]∗ scatters around 0
ms | X̃s ≡ M2

ssw
2
0 − [M2

ssw
2
0]∗ scatters around 0

δm | X̃δm ≡ ∆M2w2
0 scatters around [∆M2w2

0]∗

(28)

where

• w0 is the Wilson-flow-based, pure-gauge scale defined in [20].
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• The masses Muu, Mdd, and Mss are the masses of the neutral mesons ūu, d̄d, and s̄s, where
only connected diagrams are considered in the propagators. They are neutral and have no
magnetic moment (see [22]).

• ∆M2 = (M2
dd
−M2

uu) is a measure of strong-isospin-breaking that is not significantly affected
by electromagnetic corrections. The equality ∆M2 = 2B2δm is valid up to effects that are
beyond leading order in isospin breaking, as explained in [23].

• M2
πχ
= 1

2 (M2
uu + M2

dd
) equals the neutral pion mass M2

π0 up to terms that are beyond leading
order in isospin breaking [23].

Now, the quantities [w0]∗, [M2
ss]∗ and [∆M2]∗ are not experimentally available. However, they

have a well-defined physical continuum limit and can thus be computed using type-I fits. We get
the following results:

[w0]∗ = 0.17236(29)(63)[70] fm
[Mss]∗ = 689.89(28)(40)[49]MeV
[∆M2]∗ = 13170(320)(270)[420]MeV2

where the errors are statistical, systematic and total respectively.

Isospin decomposition. We write the expectation value of an observable O in QCD+QED, using
the set of quantities defined above (the continuum limit is assumed):

〈O〉 = 〈O〉(Mπχw0, Mssw0,
L
w0
, ∆Mw0, e), (29)

where ∆M =

√(
M2

dd
− M2

uu

)
. The QED part is defined by switching off the electric charge,

keeping the other parameters at their physical values:

〈O〉QED ≡ e2
∗ ·

∂〈O〉
∂e2 (Mπχw0, Mssw0,

L
w0
, ∆Mw0, e = 0). (30)

The strong isospin breaking part is defined as the differential

〈O〉SIB ≡ [∆Mw0]2
∗ ·

∂〈O〉
∂(∆Mw0)2 (Mπχw0, Mssw0,

L
w0
, ∆Mw0 = 0, e = 0). (31)

The isospin-symmetric part is given by the remaining part, computed at e = ∆Mw0 = 0,

〈O〉ISO ≡ 〈O〉(Mπχw0, Mssw0,
L
w0
, ∆Mw0 = 0, e = 0). (32)

Finally, we show how 〈O〉ISO, 〈O〉SIB, and 〈O〉QED emerge from the fitting procedure. Our
observable O can be parametrized by the linear function

O = f ({X̃ }, Ã, B̃, ...) ≡ Ã + B̃X̃l + C̃ X̃s + D̃X̃δm + Ẽ X̃vv + F̃ X̃vs + G̃X̃ss, (33)

where the fit coefficients Ã, B̃, ... have the same form as in (26). If we consider separately each
isospin derivative, (33) can be split to a system of five equations:




[O]0 = Ã + B̃X̃l + C̃ X̃s

[O]′m = [D̃X̃δm]′m
[O]′′20 = [Ã + B̃X̃l + C̃ X̃s + D̃X̃δm]′′20 + [Ẽ]0

[O]′′11 = [Ã + B̃X̃l + C̃ X̃s + D̃X̃δm]′′11 + [F̃]0

[O]′′02 = [Ã + B̃X̃l + C̃ X̃s + D̃X̃δm]′′02 + [G̃]0

(34)
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astrange
µ (Lref,Tref ) alight

µ (Lref,Tref ) adisc
µ (Lref,Tref )

QED-vv -0.0086(42)(41) -1.24(40)(31) -0.55(15)(10)
QED-vs -0.0014(11)(14) -0.0079(86)(94) 0.011(24)(14)
QED-ss -0.0031(76)(69) 0.37(21)(24) -0.040(33)(21)
Total QED -0.0136(86)(76) -0.93(35)(47) -0.58(14)(10)
SIB 0 6.60(63)(53) -4.67(54)(69)
Total IB -0.0136(86)(76) 5.67(72)(71) -5.25(56)(70)

Table 1: Continuum extrapolated results for the different components of the strange, light and disconnected,
strong and QED isospin-breaking contributions to aLO−HVP

µ × 1010. Labels v and s refer to valence and sea
respectively. The first error is statistical, the second systematic. These results correspond to a box of size
Lref = 6.27 fm and Tref =

3
2 Lref .

We get the isospin-breaking decomposition after a continuum extrapolation is performed:

〈O〉ISO = Ã0, 〈O〉SIB = D̃0 X̃δm, 〈O〉QED = e2
∗ (Ẽ0 + F̃0 + G̃0), (35)

where 〈O〉QED = e2
∗ (Ẽ0 + F̃0 + G̃0) can be further separated in

〈O〉QED−vv = e2
∗ Ẽ0, 〈O〉QED−vs = e2

∗ F̃0, 〈O〉QED−ss = e2
∗G̃0. (36)

5. Conclusions

QED and strong-isospin-breaking corrections to aLO−HVP
µ are necessary to reach the precision

needed for comparison to experiments. In our work, we have included IB corrections, in current
propagators and in hadron masses, by expanding these quantities to first order in the isospin-
breaking parameters δm and e2, and by measuring each term on isospin-symmetric configurations.
Furthermore, we have defined an isospin decomposition of observables, which allows us to evaluate
the QED and the strong-isospin-breaking contributions to aLO−HVP

µ summarized in Table 1.
A detailed comparison of isospin-breaking effects computed by different collaborations is a

delicate matter, as contributions computed and separation scheme used may differ from group to
group. It is nevertheless essential to mention the other works on the subject. Connected valence-
valence QED effects have been computed in [26] and [27]. In particular, the strange contribution
to this effect is reported in [15] and in the supplemental material of [26]. The connected part of
the strong-isospin-breaking effect has been computed in [24, 26, 27] and most recently in [28]. See
also [29] for a comparative table and further details.
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