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In this work, we propose an alternative approach of Lüscher’s formula to extract the two-body
interaction from the finite volume energy levels. We adopt the plane wave expansion rather
than the partial wave expansion in calculation. In this framework, the exponential suppressed
effect and partial wave mixing effect are embedded naturally. We use the spin singlet NN system
and 𝜋𝜋 system in 𝜌 channel as examples of non-relativistic and relativistic examples. For spin
singlet NN system, the one-pion-exchange interaction at physical pion mass will make the single
channel Lüscher’s formula unreliable. For S-wave dominant states, Lüscher’s formula gives rise
to significant deviation for the 𝐿 = 3 fm box. For the 1𝑃1 dominant states, the mixing effect
from the higher partial wave components is significant even in the box with 𝐿 = 8 fm. We adopt
a toy model to illustrate the combination of effective field theory and the plane wave expansion
approach can solve the problems. For the 𝜌 channel 𝜋𝜋 interaction, we use a phenomenological
model to fit the lattice QCD results. The fitting results can depict the 𝜋𝜋 scattering phase shift
well.
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1. Introduction

The lattice QCD simulations are formulated in the discrete space time in a finite volume (FV).
The outputs of lattice QCD for investigating the two-body interaction are in general some energy
levels in FV. Three decades ago, Lüscher proposed an approach of extracting the two-particle elastic
scattering phase shifts from their energy levels in a finite box with periodic boundary conditions [1–
3]. Apart from the original derivation, one can also obtain Lüscher formula by expanding the
Lippmann-Schwinger equation (LSE) in FV with partial wave basis [4]. There are two attractive
features of Lüscher formula, the model-independence and one-to-one correspondence. If the
box size 𝐿 is much larger than the interaction range 𝑅, such that the exponentially suppressed
corrections 𝑒−𝐿/𝑅 are negligible. The Lüscher formula can set up the relation independent of the
two-body interaction. However, some interesting interaction for example, one-pion-exchange (OPE)
interaction are long-range compared with the box size using in practical lattice QCD simulations.
For the second feature, if one keeps only the lowest partial wave component, the Lüscher formula
sets up a one-to-one relation between the energy level in FV with the phase shift. However, in
the box, the rotational symmetry is broken into symmetries describing by some point groups. The
partial wave mixing effect is unavoidable, which could play important roles.

In order to overcome the limits, one can incorporate the partial mixing effect in Lüscher formula
by parameterizing the 𝑇-matrix with theoretical frameworks, for example, the effective range
expansion. In addition, many alternative approaches were proposed, the HAL QCD method [5],
unitarized chiral perturbation theory in FV [6], Hamiltonian effective field theory [7].

We propose an another alternative approach of Lüscher formula by combing the plane wave
expansion and effective field theory (EFT). Lüscher formula is the quantization conditions in sense
of partial wave expansion. However, due to the loss of the rotational symmetry, we choose to
expand the LSE in FV with plane wave basis with discrete momenta. The long-range interaction is
usually known, e.g. the OPE interaction. We use the EFT to embed the known long-range part and
determine the short-range part by lattice QCD inputs.

2. Theoretical formalism

In the plane wave expansion, the LSE becomes an matrix equation,

T = V + VGT, with T𝒏′,𝒏 = 𝑇

(
2𝜋
𝐿
𝒏′,

2𝜋
𝐿
𝒏; 𝐸

)
, G𝒏,𝒏′ =

1
𝐿3

1

𝐸 − 𝑞2
𝒏

𝑚𝑁

𝛿𝒏′,𝒏, (1)

where we adopt the periodic boundary conditions and truncate the momenta at 𝑛2 < 𝑛2
𝑚𝑎𝑥 . If the

interaction is energy-independent, one can transform the LSE into a eigenvalue problem,

det
(
G−1 − V

)
= 0 → det (H−𝐸I) = 0, with H𝒎,𝒏 =

1
𝐿3V𝒎,𝒏 + 𝑞2

𝒏

𝑚𝑁

𝛿𝒎,𝒏, (2)

where H is the Hamiltonian matrix. The Hmatrix can be reduced to block-diagonal ones according
to the reducible representations (irreps) of the relevant point group,

H
reduction
=======⇒

©«
HΓ𝑖

HΓ 𝑗

. . .

ª®®¬block-diagnal

, det (HΓ − 𝐸ΓI) = 0. (3)
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Figure 1: Upper (lower) row: Various symbols show the 1S0 (1P1) phase shifts calculated from the FV
energy spectra using the single-channel Lüscher formula for the case of pionless EFT at NLO.

We final get the determinant equation with specific irrep. In the reductions, projection operator
techniques [8] are used. For example, the representation space of cubic group 𝑂ℎ is constructed as

{𝑛1, 𝑛2, 𝑛3} ≡ {|𝑛1, 𝑛2, 𝑛3〉 + perm. 𝑛1, 𝑛2, 𝑛3 + change signs}. (4)

Under such a plane wave basis, the representations is 〈𝒏′ |�̂� (𝑔) |𝒏〉 = 𝛿𝒏′,𝑔𝒏. We totally get seven
patterns of representation space,

{0, 0, 0}1, {0, 0, 𝑎}6, {0, 𝑎, 𝑎}12, {0, 𝑎, 𝑏}24, {𝑎, 𝑎, 𝑎}8, {𝑎, 𝑎, 𝑏}24, {𝑎, 𝑏, 𝑐}48, (5)

where the subscription is the dimension of the space. We can reduce each representation space into
the direct sum of the irreps of 𝑂ℎ group, for example, {0, 0, 𝑎}6 = 𝐴+

1 ⊕ 𝐸+ ⊕ 𝑇−
1 . For the general

case with elongated box, moving systems, arbitrary spin systems, the general process is

Symmetric group (character table)
�̂�Γ

−−→ unitary irrep matrices
�̂�Γ
𝛼𝛽−−−→ rep. space |𝑝𝑛〉 → irreps.,

(6)
where �̂�Γ and �̂�Γ

𝛼𝛽
are character projection operator and projection operator, respectively.

3. Application I: spin-singlet NN scattering

The first application is nonrelativistic NN scattering. We focus on the spin-singlet systems.
We first adopt contact interaction as a benchmark,

𝑉
(0)
cont( 𝒑, 𝒑′) = 𝐶𝑆 , 𝑉

(2)
cont( 𝒑, 𝒑′) = 𝐶1𝒒

2 + 𝐶2𝒌
2, (7)
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Figure 2: Upper (lower) row: Various symbols show positive-parity (negative-parity) phase shifts calculated
from the FV energy spectra using the S-wave (P-wave) Lüscher formula for the chiral EFT potential at NNLO.
For remaining notations see figure 1.

where the interaction only contribute to S-wave and P-wave in the infinite volume. The phase shifts
are presented in the solid line in Fig. 1. We put the interaction into boxes with 𝐿 =3,5,8 fm and
then obtain the FV energy levels via plane wave expansion. The phase shifts corresponding to these
energy levels are extracted from the Lüscher formula with the lowest partial wave. The phase shifts
from one-channel Lüscher formula agree with the accurate one very well. One can notice many
energy levels with vanishing phase shifts which are non-interacting D-, F- and higher partial wave
states. In the plane wave expansion scheme, the high partial wave states are included naturally.

Next, we adopt a realistic NN interaction from the NNLO chiral effective field theory [9],

𝑉 = 𝑉
(0)
cont +𝑉

(0)
1𝜋 +𝑉 (2)

cont +𝑉
(2)
2𝜋 +𝑉 (2)

1𝜋 +𝑉 (3)
2𝜋 . (8)

The comparisons between plane wave expansion and Lüscher formula for parity-even and parity-odd
states are presented in Figs. 2. One can see the Lüscher formula can extract the S-wave phase shift
in the larger box with 𝐿 = 5 fm well. However, the deviations of Lüscher formula for the small box
𝐿 = 3 fm is significant. For the odd-parity states, however, increasing the box do not improve the
single-channel Lüscher formula.

In order to understand the deviations, we adopt a more simple interaction, OPE interaction.
Apart from the full OPE interaction, we can decompose the interaction in the partial wave basis,

𝑉 ( 𝒑, 𝒑′) =
∑︁
𝑙

2𝑙 + 1
4𝜋

𝑉𝑙 (𝑝, 𝑝′)𝑃𝑙 (𝑧), 𝑉S-wave( 𝒑, 𝒑′) = (4𝜋)−1𝑉0(𝑝, 𝑝′)𝑃0(𝑧), (9)

One can choose to switch off some partial wave contributions. In above equation, we give the
interaction switch off all partial wave except the S-wave part. The results for these interactions are
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Figure 3: Phase shifts in the positive-parity channels extracted from the FV energy spectra using the S-wave
Lüscher formula (various symbols) in comparison with the infinite-volume results for the OPE potential
(upper row) and the S-wave projected OPE potential (lower row).

given in Figs. 3 and 4. One can see that for the full OPE interaction the deviations of Lüscher
formula are qualitatively similar to the NNLO chiral interaction. Meanwhile, when the high partial
wave interactions are turned off, the derivations disappear except in the smallest box. For the
odd-parity state, when the P-wave and F-wave interaction are both included, the pattern in the lower
sibfigure of Fig. 4 return to mess. Therefore, we can conclude that the partial wave mixing effect in
FV results in the derivations of the single-channel Lüscher formula. The results are sensitive to the
second lowest partial wave components, which was indicated in Ref. [10] as well.

In order to overcome the limits of Lüscher formula, we adopt an EFT-inspired approach. We
first generate “synthesis" lattice QCD data through a toy model,

𝑉toy = 𝑉1𝜋 +𝑉1ℎ = −
(
𝑔𝐴

2𝐹𝜋

)2
𝑀2

𝜋

𝒒2 + 𝑀2
𝜋

𝝉1 · 𝝉2 + (𝑐ℎ1 + 𝑐ℎ2𝝉1 · 𝝉2)
1

𝒒2 + 𝑚2
ℎ

, (10)

where 𝑉1𝜋 and 𝑉1ℎ are OPE interaction and heavy-meson exchange interaction. The mass of the
heavy meson is 𝑚ℎ = 0.5 GeV. We fit the FV energy levels generate from the above interaction with
an EFT interaction

𝑉EFT = 𝑉
(0)
OPE +𝑉 (0)

cont +𝑉
(2)
cont +𝑉

(4)
cont + ... (11)

where 𝑉OPE is the OPE interaction and 𝑉 (𝛼)
cont is the short-range interaction order by order. In the

fitting, we use the determinant residual method [11] and only the ground state of each irreps as the
inputs. The results are presented in Fig. 5. One can see that the fitting is improved with orders. We
present the phase shift in Fig. 6. Compared with the real phase shifts, the fitting phase shifts are
also improved order by order. One can see the fitting do uncover the underlying theory even in a

5
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Figure 4: Phase shifts in the negative-parity channels extracted from the FV energy spectra using the P-
wave Lüscher formula (various symbols) in comparison with the infinite-volume results for the OPE potential
(upper row), the P-wave projected OPE potential (middle row) and the P- and F-wave projected OPE potential.

small box 𝐿 = 3 fm. What is more important, we include some energy levels of which phase shifts
from Lüscher formula derive significantly from the real ones. However, these energy levels do not
prevent us from good fitting. Because we include all partial wave components.

4. Application II: 𝜌-channel 𝜋𝜋 scattering

For the relativistic system, 𝜌-channel 𝜋𝜋 scattering, we adopt an phenomenological interaction

𝑉 ( 𝒑, 𝒑′; 𝐸) = −2 𝒑 · 𝒑′
𝑓 2

(
1 +

2𝐺2
𝑉

𝑓 2
𝐸2

𝑀2
0 − 𝐸2

)
, (12)

where three parameters 𝑓 ,𝐺𝑉 and𝑀0 can be determined by fitting experimental phase shift [12, 13]
as shown in left subfigure in Fig. 7. We put the interaction into the finite box and obtain the energy
levels. The phase shifts extracted from the energy levels via the Lüscher formula are given in the
middle subfigure of Fig. 7. One can see Lüscher formula works very well, because the interaction in

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
6
1

Quantization conditions in the finite volume within the plane wave basis expansion Lu Meng

0.05

0.10

0.15

0.20

positive parity

Fit-NLO

Fit-LO

"LQCD"

0.05

0.10

0.15

0.20

negative parity

Fit-NNLO

Fit-NLO

"LQCD"

Figure 5: Comparisons of the synthetic lattice energy levels with positive (upper) and negative (lower) parity
in the box with 𝐿 = 5 fm and those from the EFT determined by fitting (see figure 1 for marker meaning).

(12) only contributes to the P-wave. Meanwhile, the lattice QCD energy levels in this channel were
obtained in Ref. [14]. Thus, we use our plane wave expansion approach to determined the three
parameters by lattice QCD energy levels below the 4𝑚𝜋 threshold. The results are presented in right
subfigure of Fig. 7. One can see we could obtain the phase shift roughly. The large uncertainties
can be reduced by adopting more rigorous 𝜋𝜋 scattering framework.
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Figure 6: 1S0 (upper row) and 1P1 (lower row) phase shifts extracted by matching the EFT to the finite-
volume spectra for the toy-model example in comparison with the underlying phase shifts shown by the solid
blue lines.
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Figure 7: P-wave 𝜋𝜋 phase shifts from phenomenological model [Eq. (12)] (left), Lüscher formula (middle)
and fitting lattice QCD data (right).

5. Summary

In this work, we propose an alternative approache of Lüscher’s formula to extract the informa-
tion of the two-body interaction from the FV energy levels. We adopt the plane wave expansion
rather than the partial wave expansion. Within the projection operator technique, we reduce the
discrete plane wave basis into the direct sum of several irrep spaces of the corresponding discrete
groups. LSE can be represented in matrix equations with fixed irreps. The FV energy levels are
obtained by finding the poles of these LSEsin the FV. For the non-relativistic systems, we use the
spin singlet 𝑁𝑁 systems as an example. Our results show that one can not extract reliable NN inter-
actions by the single-channel Lüscher’s formula from the lattice simulation in a small box (𝐿 . 3
fm) or when the partial wave mixing effect is significant (1𝑃1 channel). We adopt a toy model
to illustrate that the plane wave expansion approach can solve above problems. In this approach,
we do not introduce the partial wave expansion and thus the partial wave mixing effect due to the
breaking of rotational symmetry in the FV is embed naturally. Meanwhile, we do not presume the
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relation of the box size and the interaction range. In fact, we include the exponential suppressed
effect. Thus, such an approach could be used to the investigate the FV effect in the small box. For
the relativistic system, we use the 𝜋𝜋 scattering in the 𝜌 channel as an example. We demonstrate
that our approach can be used to extract the infinite interaction from the FV energy levels.
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