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1. Introduction

Polarizabilities describe the leading energy shift for a neutral particle in a constant electric and
magnetic field. In Minkowski space-time convention, we have [1]:

𝐻eff = −4𝜋
2
𝛼𝐸2 − 4𝜋

2
𝛽𝐵2 (Minkowski) , (1)

where 𝛼 is the electric and 𝛽 is the magnetic polarizability. In Euclidean space-time, the convention
for the electric field is different. Therefore, we have

𝐻eff =
4𝜋
2
𝛼𝐸2 − 4𝜋

2
𝛽𝐵2 (Euclidean) . (2)

In the following discussion, we will use the Euclidean space-time convention by default. Based on
this definition, the polarizabilities of neutral particles can be related to the low energy behavior of
the hadronic Compton tensor, ⟨𝑁 |𝐽𝜇 (𝑥)𝐽𝜈 (0) |𝑁⟩. For a charged particle, polarizability can also
be defined via the low energy behavior of the hadronic Compton tensor after subtracting the Born
term contribution. The electric current operator is defined as follow

𝐽𝜇 (𝑥) = 𝐽𝜇 (𝑡𝑥 , ®𝑥) = 𝑒

(
𝑒𝑢�̄�𝛾𝜇𝑢 + 𝑒𝑑𝑑𝛾𝜇𝑑 + 𝑒𝑠𝑠𝛾𝜇𝑠

)
, (3)

where 𝑒𝑢 = 2/3, 𝑒𝑑 = 𝑒𝑠 = −1/3, and 𝛼QED = 𝑒2/(4𝜋) ≈ 1/137. The 𝛾𝜇 matrices satisfy the
anti-commutation relation: {𝛾𝜇, 𝛾𝜈} = 2𝛿𝜇,𝜈 .

Two-loop calculations of the pion polarizabilities using Chiral perturbation theory have been
done for both the charged pion [2–4] and the neutral pion [5, 6]. There are also some lattice
calculations from first principle using the background field method [7–9]. There are also attempts
to use hadronic Compton tensor with small momentum transfer to extract polarizablities [10, 11].
Realistic lattice calculations along this direction are also underway.

In this work, we derive different position space formulas using the hadronic tensor to obtain
the pion electric polarizabilities. We demonstrate these formulas allow efficient lattice calculations
and will show some numerical results. In particular, we emphasis the finite volume errors of the
master formula obtained are exponentially suppressed by the spatial lattice size 𝐿.

2. Formulation

2.1 Neutral pion

We start the derivation in finite volume to avoid the infinities from the infinite volume. However,
we assume a periodic boundary box with very large volume (much larger than the real lattice size)
so the finite volume effects can be neglected. We will analyze the finite volume effects of possible
lattice calculations after we obtained the final expression.

Consider the zero momentum neutral pion correlation function (𝑡snk ≫ 0 ≫ 𝑡src) in the presence
of very smooth and slow varying external vector potential 𝐴𝜇 (𝑥) = 𝐴𝜇 (𝑡𝑥 , ®𝑥), which is only non-
zero in the middle region of the pion correlation function. We expect the neutral pion correlation
function takes the following form according to the definition of the pion polarizabilities.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
6
2

Pion electric polarizabilities from lattice QCD Luchang Jin

⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩𝐴𝜇
= ⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩ exp

(
−4𝜋

2

∫
𝑥

𝛼𝜋0𝐸2(𝑥) − 𝛽𝜋0𝐵2(𝑥)
𝐿3

)
, (4)

where 𝜋0(𝑡) is a pion field with vanishing spatial momentum. We can also calculate the correlation
function as a perturbative expansion in the vector potential 𝐴𝜇:

⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩𝐴𝜇
= ⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩ + ⟨𝑇𝜋0(𝑡snk)

∫
𝑥

𝑖𝐴𝜇 (𝑥)𝐽𝜇 (𝑥)𝜋0(𝑡src)⟩ (5)

+1
2
⟨𝑇𝜋0(𝑡snk)

∫
𝑥

𝑖𝐴𝜇 (𝑥)𝐽𝜇 (𝑥)
∫
𝑦

𝑖𝐴𝜈 (𝑦)𝐽𝜈 (𝑦)𝜋0(𝑡src)⟩ .

For the neutral pion,

⟨𝜋0(𝑡snk)𝐽𝜇 (𝑥)𝜋0(𝑡src)⟩ = 0 . (6)

Combine the above equations and use translational invariance, we obtain:

4𝜋
2

∫
𝑥

𝛼𝜋0𝐸2(𝑥) − 𝛽𝜋0𝐵2(𝑥)
𝐿3

=
1
2

∫
𝑥

( ∫
𝑦

𝐴𝜇 (𝑥 + 𝑦)𝐴𝜈 (𝑦)
)
⟨𝑇𝜋0(𝑡snk)𝐽𝜇 (𝑥)𝐽𝜈 (0)𝜋0(𝑡src)⟩

⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩
(7)

=
1
2

∫
𝑥

( ∫
𝑦

𝐴𝜇 (𝑥 + 𝑦)𝐴𝜈 (𝑦)
)

1
2𝑀𝜋

⟨𝜋0 |𝑇𝐽𝜇 (𝑥)𝐽𝜈 (0) |𝜋0⟩ . (8)

In the second step, we have rewrite the correlation function in terms of the matrix elements of the
zero momentum pion state. Actually, we need to subtract the vacuum contribution in the above
formula (note the above derivation is valid without the pion as well, in which case we would obtain
the vacuum fermion sea energy shift due to the E&M field):

⟨𝑇𝜋0(𝑡snk)𝐽𝜇 (𝑥)𝐽𝜈 (0)𝜋0(𝑡src)⟩
⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩

(9)

→
⟨𝑇𝜋0(𝑡snk)𝐽𝜇 (𝑥)𝐽𝜈 (0)𝜋0(𝑡src)⟩

⟨𝑇𝜋0(𝑡snk)𝜋0(𝑡src)⟩
− ⟨𝑇𝐽𝜇 (𝑥)𝐽𝜈 (0)⟩ .

We will assume this subtraction in later discussion without explicitly writing it down.
At this point, we can consider some specific choice of vector potential. Focusing on the electric

polarizability, we can choose:

®𝐴(𝑡𝑥) = ®𝐴(𝑡𝑥 , ®𝑥) = ®𝐴(𝑥) , (10)

while taking the time component of the vector potential equal to zero. Only the electric field is
non-zero with this choice. Apply the general formula Eq. (8), we obtain:

𝐼eff =

∫
𝑡𝑥

4𝜋
2
𝛼𝜋0𝐸2(𝑡𝑥) (11)

=

∫
𝑡𝑥 , ®𝑥

( ∫
𝑡𝑦

𝐴𝑖 (𝑡𝑥 + 𝑡𝑦)𝐴 𝑗 (𝑡𝑦)
)

1
2𝑀𝜋

1
2
⟨𝜋0 |𝑇𝐽𝑖 (𝑡𝑥 , ®𝑥)𝐽 𝑗 (0, ®0) |𝜋0⟩ . (12)
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Since we choose the vector potential to vary very slowly, we can expand the time dependence of ®𝐴:

𝐴𝑖 (𝑡𝑥 + 𝑡𝑦) ≈ 𝐴𝑖 (𝑡𝑦) + 𝑡𝑥𝜕𝑡𝐴𝑖 (𝑡𝑦) +
1
2
𝑡2𝑥𝜕

2
𝑡 𝐴𝑖 (𝑡𝑦) + . . . . (13)

Due to the current conservation (𝜕𝑥
𝜇 𝐽𝜇 (𝑡𝑥 , ®𝑥) = 0):∫

𝑡𝑥 , ®𝑥
⟨𝜋0 |𝑇𝐽𝑖 (𝑡𝑥 , ®𝑥)𝐽 𝑗 (0, ®0) |𝜋0⟩ =

∫
𝑡𝑥 , ®𝑥

𝜕𝑥
𝜇 ⟨𝜋0 |𝑇𝑥𝑖𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽 𝑗 (0, ®0) |𝜋0⟩ = 0 , (14)

and time reflection symmetry:∫
𝑡𝑥 , ®𝑥

𝑡𝑥 ⟨𝜋0 |𝑇𝐽𝑖 (𝑡𝑥 , ®𝑥)𝐽 𝑗 (0, ®0) |𝜋0⟩ = 0 , (15)

the first two terms in Eq. (13) do not contribute to 𝐼eff in Eq. (12). Only the third term remains.
Therefore

𝐼eff =
1
2

∫
𝑡𝑥 , ®𝑥,𝑡𝑦

𝐴 𝑗 (𝑡𝑦)
1
2
𝑡2𝑥𝜕

2
𝑡 𝐴𝑖 (𝑡𝑦)

1
2𝑀𝜋

⟨𝜋0 |𝑇𝐽𝑖 (𝑡𝑥 , ®𝑥)𝐽 𝑗 (0, ®0) |𝜋0⟩ . (16)

Integrating by part and noticing the matrix element is only non-zero (after integration) when 𝑖 = 𝑗 ,
we obtain:

𝐼eff = −1
2

∫
𝑡𝑦

1
2
𝜕𝑡 ®𝐴(𝑡𝑦) · 𝜕𝑡 ®𝐴(𝑡𝑦)

∫
𝑡𝑥 , ®𝑥

1
3
𝑡2𝑥

1
2𝑀𝜋

⟨𝜋0 |𝑇 ®𝐽 (𝑡𝑥 , ®𝑥) · ®𝐽 (0, ®0) |𝜋0⟩ . (17)

Comparing the above equation with Eq. (11), we obtain for 𝛼𝜋0 :

𝛼𝜋0 = −
∫
𝑡𝑥 , ®𝑥

𝑡2𝑥
24𝜋

1
2𝑀𝜋

⟨𝜋0 |𝑇 ®𝐽 (𝑡𝑥 , ®𝑥) · ®𝐽 (0, ®0) |𝜋0⟩ . (18)

This is our master formula in this paper to obtain 𝛼𝜋0 . While the above equation seems positive
definite, it does not imply 𝛼𝜋0 > 0. The reason is that the vacuum contribution needs to be
subtracted as indicated in Eq. (9).

It is possible to use the general Eq. (8) with a different choice of 𝐴𝜇 (𝑥). For example, we can
choose a mostly time independent field 𝐴𝜇 (𝑥) = 𝐴𝜇 (®𝑥) within a very long time interval with length
𝑡int. The fields smoothly vanishes outside the time interval. We have the following relations:∫

𝑡𝑥 , ®𝑥
𝐸2(𝑡𝑥 , ®𝑥) ≈ 𝑡int

∫
®𝑥
𝐸2(®𝑥) , (19)∫

𝑡𝑥 , ®𝑥
𝐵2(𝑡𝑥 , ®𝑥) ≈ 𝑡int

∫
®𝑥
𝐵2(®𝑥) . (20)

With this choice of vector potential, we can similarly derive the the following formulas for 𝛼𝜋0 and
𝛽𝜋0 :

𝛼𝜋0 = −
∫
𝑡𝑥 , ®𝑥

®𝑥2

24𝜋
1

2𝑀𝜋

⟨𝜋0 |𝑇𝐽𝑡 (𝑡𝑥 , ®𝑥)𝐽𝑡 (0, ®0) |𝜋0⟩ , (21)

𝛽𝜋0 =

∫
𝑡𝑥 , ®𝑥

®𝑥2

48𝜋
1

2𝑀𝜋

⟨𝜋0 |𝑇 ®𝐽 (𝑡𝑥 , ®𝑥) · ®𝐽 (0, ®0) |𝜋0⟩ (22)

= −
∫
𝑡𝑥 , ®𝑥

1
24𝜋

1
2𝑀𝜋

⟨𝜋0 |𝑇 ®𝑥 · ®𝐽 (𝑡𝑥 , ®𝑥)®𝑥 · ®𝐽 (0, ®0) |𝜋0⟩ .

Since the matrix elements satisfy the current conservation condition, we can obtain different but
equivalent formulas for both 𝛼𝜋0 and 𝛽𝜋0 .
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2.2 Charged pion

The charged pion polarizabilities are more conveniently defined via low-energy expansion
coefficients of the (virtual) Compton scattering processes after the leading generalized Born terms
being subtracted.

⟨𝜋 |𝑇𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽𝜈 (0, ®0) |𝜋⟩𝑆 = ⟨𝜋 |𝑇𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽𝜈 (0, ®0) |𝜋⟩ − ⟨𝜋 |𝑇𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽𝜈 (0, ®0) |𝜋⟩Born . (23)

The Born term can be defined as Eq. (115) in Ref. [1]. For the Compton scattering processes, in
case where the photons are on-shell, the Born term is equal to the scalar QED contribution. If the
photons are off-shell, the (generalized) Born term is defined to include the electromagnetic form
factor of the pions. The Euclidean space-time expression for the Born term is:

𝑇Born
𝜇,𝜈 (𝑞𝑡 , ®𝑞) =

∫
𝑡𝑥 , ®𝑥

𝑒𝑖𝑞𝑡 𝑡𝑥−𝑖 ®𝑞 · ®𝑥 ⟨𝜋 |𝑇𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽𝜈 (0, ®0) |𝜋⟩ (24)

= 𝑒2𝐹2(𝑞2
𝑡 + ®𝑞2)

(
2𝛿𝜇,𝜈 −

(2𝑝 + 𝑞)𝜇 (2𝑝 + 𝑞)𝜈
(𝑝 + 𝑞)2 + 𝑀2

𝜋

−
(2𝑝 − 𝑞)𝜇 (2𝑝 − 𝑞)𝜈

(𝑝 − 𝑞)2 + 𝑀2
𝜋

)
, (25)

where 𝑝 = (𝑖𝑀𝜋 , ®0).
After the Born term subtraction, the polarizabilies for both neutral and charged pions can be

defined in a uniform way as the low-energy expansion coefficients. Therefore, the derived formulas
Eqs. (18,21,22,23) is valid for the charged pions if we use the Born term subtracted Compton tensor
defined in Eq. (23). 1

In particular, for our master equation, Eq. (18), we can explicitly calculate the Born term
contribution, which we need to subtract. Based on the Born term definition, we have:

𝜕2

𝜕𝑞2
𝑡

𝑇Born
𝑘,𝑘 (𝑞𝑡 , ®0)

�����
𝑞𝑡=0

= −
∫
𝑡𝑥 , ®𝑥

𝑡2𝑥 ⟨𝜋 |𝑇𝐽𝑘 (𝑡𝑥 , ®𝑥)𝐽𝑘 (0, ®0) |𝜋⟩Born (26)

=
𝜕2

𝜕𝑞2
𝑡

(
𝑒2𝐹2(𝑞2

𝑡 )2𝛿𝑘,𝑘
)
. (27)

For charged pion, we have 𝐹𝜋± (𝑞2) ≈ 1 − 𝑟2
𝜋𝑞

2/6, where 𝑟𝜋 = 0.659(4) fm [13], is the 𝜋± charge
radius. Combining Eqs. (18,23,26,27), we obtain the expression for 𝛼𝜋± :

𝛼𝜋± = −
∫
𝑡𝑥 , ®𝑥

𝑡2𝑥
24𝜋

1
2𝑀𝜋

⟨𝜋± |𝑇 ®𝐽 (𝑡𝑥 , ®𝑥) · ®𝐽 (0, ®0) |𝜋±⟩ − 𝛼Born
𝜋± , (28)

where 𝛼Born
𝜋± = −𝛼QED

𝑟2
𝜋

3𝑀𝜋
= −14.94(18) × 10−4 fm3.

3. Lattice calculation

On the lattice, we calculate the Euclidean space-time hadronic Compton tensor from the
four-point function:

1
2𝑀𝜋

⟨𝜋 |𝑇𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽𝜈 (0, ®0) |𝜋⟩ = 𝐿3 ⟨𝜋(𝑡𝑥 + 𝑡sep)𝐽𝜇 (𝑡𝑥 , ®𝑥)𝐽𝜈 (0, ®0)𝜋†(−𝑡sep)⟩𝐿
⟨𝜋(𝑡𝑥 + 𝑡sep)𝜋†(−𝑡sep)⟩𝐿

, (29)

1For neutral pions, the formulas are valid with or without the Born term subtraction, i.e. 𝛼Born
𝜋0 = 0.
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where we use Coulomb gauge fixed wall source for the pion operator 𝜋(𝑡), and 𝑡sep is the time
separation between the current operator and the pion interpolating operator. The separation 𝑡sep is
fixed for each ensemble and set to be large enough (∼ 1.5 fm) to ensure projection to the pion state.
Calculation of the hadronic Compton tensor is performed on four ensembles generated by the RBC
and UKQCD collaborations. The names and attributes of the ensembles are shown in Table 1. The
properties of these ensembles are studied in detail in Ref. [12].

To study the size of the excited states contamination in our calculation, we define the following
ratio:

𝑅(𝑡) = ⟨𝜋(𝑡)𝜋†(−𝑡)⟩𝐿
cosh

(
𝑀𝜋 (2 𝑡 − 𝑇/2)

) (30)

The ratio should reach constant for large enough 𝑡, and its deviation from that constant at small 𝑡
represent the norm of the excited states. The lattice results of the above ratio is plotted in Figure 1.
It can be seen that the norms of the excited states are below 1 % and are statistically insignificant.

Volume 𝑎−1 (GeV) 𝐿 (fm) 𝑀𝜋 (MeV) 𝑡sep (𝑎)
48I 483 × 96 1.730(4) 5.5 135 12
64I 643 × 128 2.359(7) 5.4 135 18
24D 243 × 64 1.0158(40) 4.7 142 8
32D 323 × 64 1.0158(40) 6.2 142 8

Table 1: List of the ensembles used in the calculations and their properties. They are generated by the RBC
and UKQCD collaborations. [12] Note we use a partially quenched quark mass for 48I and 64I ensembles.
The unitary pion mass for both 48I and 64I ensembles is 139 MeV. We use unitary quark masses for all the
other ensembles.

1

1.02

1.04

1.06

1.08

0 0.5 1 1.5 2 2.5 3

R
(t
)/
R
(t

s
e
p
)

t (fm)

48I
64I
24D
32D

Figure 1: Ratio of the pion correlation function and its pion state contribution normalized at 𝑡sep. 𝑅(𝑡) is
defined in Eq. (30). Vertical lines correspond to 𝑡sep used for each ensemble.

In this calculation of the pion polarizabilities, we only included the contribution from the quark
connected diagrams, which are shown in Figure 2. We plot the results in Figure 3 as a function of 𝑡:

𝛼𝜋 (𝑡) = −
∫
−𝑡<𝑡𝑥<𝑡

∫
®𝑥

𝑡2𝑥
24𝜋

1
2𝑀𝜋

⟨𝜋 |𝑇 ®𝐽 (𝑡𝑥 , ®𝑥) · ®𝐽 (0, ®0) |𝜋⟩ − 𝛼Born
𝜋 . (31)
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Figure 2: Quark connected diagrams of the four-point hadronic function (hadronic Compton tensor) used to
calculate the pion polarizabilities. The dot represent the vector current operator insertion.
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Figure 3: Electric polarizabilities of charged pion (left) and neutral pion (right). The 𝑡 dependence is given
by Eq. (31), 𝛼𝜋 = 𝛼𝜋 (𝑡 → +∞). ChPT results are from Ref. [2–6].
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Figure 4: Difference of the electric polarizabilities between charged pion and neutral pion 𝛼𝜋± − 𝛼𝜋0 . The
𝑡 dependence is given by Eq. (31), 𝛼𝜋 = 𝛼𝜋 (𝑡 → +∞). ChPT results are from Ref. [2–6].

This is the partial sum of the 𝑡 integral of our master formula Eq. (18,28), and 𝛼𝜋 = 𝛼𝜋 (𝑡 → +∞).
We notice that the difference between the electric polarizabilities of the charged pion and the

neutral pion 𝛼𝜋± − 𝛼𝜋0 only depends on the left diagram in Figure 2 (and a disconnected diagram
which we ignore). The numerical lattice result for this diagram is more precise than the other
diagram. Therefore, we plot the difference in Figure 4. In the right plot, we find the finite volume
effect is very small since the results from the 24D and 32D ensembles agree well.

4. Conclusion

We have derived several position space formulas for calculating the polarizabilities of both
neutral and charged hadrons on the lattice, using pions as example. The finite volume effect of
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all these type of formulas is exponentially suppressed by the lattice size and it is found to be
numerically small in our lattice calculation as well. We also find the finite volume effects to be
about 1% in one-loop ChPT, for the charged minus neutral difference. We have calculated the
electric polarizabilities for both charged and neutral pion. At present, the lattice results tend to be
lower than the ChPT predictions in the charged minus neutral difference. Further investigation is
needed to reach firm conclusions. Improvement of the precision of the lattice calculation in the
future is possible.
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