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In a recently published work we employ gradient flow on the lattice to extract the leading contribu-
tion of the heavy quark momentum diffusion coefficient in the heavy quark limit from calculations
of a well-known two-point function of color-electric field operators. In this article we want to
report the progress of calculating the recently derived color-magnetic correlator that encodes a
finite mass correction to this transport coefficient. The calculations we present here are based on
the same ensemble of quenched gauge configurations at 1.5)2 that we previously used for the
color-electric correlator.
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1. Introduction

The foundation of numerous lattice studies of heavy quark diffusion employs heavy quark
effective theory (HQET) [1–3], which is based on an expansion of the QCD action in the inverse
heavy quark mass 1/" . By considering only the leading term of the expansion in a Kubo-type
formula for the momentum diffusion coefficient ^, one can define a gluonic Euclidean two-point
function of color-electric field operators which encodes the leading contribution to this transport
coefficient [4]. More specifically, it is defined as the l → 0 limit of the corresponding spectral
function that, in practice, has to be reconstructed from the discrete Euclidean correlator. The
spectral reconstruction is not only an underdetermined integral inversion problem, but in order to
obtain useful estimates for the spectral function one needs high-precision correlator data, which
makes it utterly necessary to implement some kind of noise reduction technique on the lattice. In
recent publications [5, 6] we have shown that gradient flow [7, 8] is a solution which is not restricted
to local actions and therefore applicable for ensembles with dynamical fermions.

Around the same time, Bouttefeux and Laine used the expanded action up toO(1/"3) to derive
the corresponding two-point functions up to O(1/"2), which ultimately yield one genuine finite
mass correction to the leading-order momentum diffusion coefficient that is suppressed by O()/")
[9]. This contribution is encoded in a color-magnetic correlator. In this proceedings article we want
to present a high-precision continuum extrapolation of this correlator from large and fine lattices
at finite flow times in a hot gluonic medium at 1.5)2 . A flow-time-to-zero extrapolation of the
continuum correlator is not as straightforward as in the case of the color-electric correlator because
of its nonzero anomalous dimension [10]. We briefly discuss this problem at the end of section 3,
but declare this task to be out of scope of this article.

2. Diffusion physics from gluonic correlation functions

Starting from the standard Kubo-formula for the diffusion coefficient D (see [4]), one can find
an expression for the momentum diffusion coefficient ^ by assuming that the diffusive motion of
heavy quarks in a hot plasma can be described by non-relativistic Langevin equations. In that
case one finds a Lorentzian transport peak in the infrared [11], whose tail encodes the momentum
diffusion coefficient in the ordered limit [4],

^ ≡ lim
l→0

lim
"→∞

^ (" ) (l), (1)

of the (non-perturbative) force-force correlator,

^ (" ) (l) ≡ 1
3j

∫ ∞

−∞
dCe8lC

∫
x

∑
8

〈
1
2

{
F 8 (C, x), F 8 (0, 0)

}〉
, F8 = "dJ8/dC, (2)

where j is the quark number susceptibility; 8 and J8 are the spatial directions and heavy quark
vector current, respectively. Note that here " is the vacuum mass and does not include a thermal
dispersive correction.

Now one has to switch to heavy quark effective theory and use the 1/"-expansion of the
action, truncated at some order, to evaluate the current derivatives through the canonical equations
of motion. In the leading order (1/") one obtains a two-point function of color-electric field
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operators which encodes the leading contribution ^� (again, see [4] for a derivation, and [5, 12, 13]
for recent non-perturbative calculations). For the first correction, which is of order (1/"2), the
contribution is called ^�, as it is encoded in a two-point function of color-magnetic field operators
[9]. This color-magnetic correlator is defined as

�� (g) ≡
∑
8 ReTr〈* (V; g)6�8 (g)* (g; 0)6�8 (0)〉

3ReTr〈* (V; 0)〉 . (3)

The non-perturbative lattice calculation of this correlator is the main focus of this article. For the
color-magnetic field we employ a naive Euclidean lattice discretization,

�1 = *2(x)*3(x + 2̂) −*3(x)*2(x + 3̂),
�2 = *3(x)*1(x + 3̂) −*1(x)*3(x + 1̂),
�3 = *1(x)*2(x + 1̂) −*2(x)*1(x + 2̂).

(4)

�� encodes (in the infrared limit of its spectral function) the correction ^� which is suppressed by
O()/") such that in total one obtains for the heavy quark momentum diffusion coefficient [9]:

^tot ' ^� +
2
3
〈v2〉^� . (5)

Here 〈v2〉 is the average squared velocity of the heavy quark in a low-energy effective description
with the thermally corrected mass "kin [9]:

〈v2〉 ≈ 3)
"kin

(
1 − 5)

2"kin

)
, "2

kin = "2(1 + O(U3/2
B )/")). (6)

To obtain ^� one has to find the infrared limit of the corresponding spectral function [9],

lim
l→0

2)
l
d� (l) = ^�, (7)

where d� (l) denotes the spectral function of the color-magnetic correlator ��:

�� (g) =
∫ ∞

0

dl
c
d� (l)

cosh
(
l(g − 1

2) )
)

sinh
(
l
2)

) . (8)

In continuum perturbation theory the leading term of �� turns out to be identical to the one of ��
[9]. Same as in [5], we want to normalize our numerical non-perturbative lattice calculations of
�� using the (nonflowed) leading-order perturbative lattice correlator of ��, which also turns out
to be identical to the one computed for �� . As usual it is divided by 62�� , and we cite it here for
reference (for unexplained notation see [5]):

�
norm
latt
gF=0(g) ≡ −

1
03V

V

2 −1∑
==− V

2

cos (2c=g)) ×
1 −

∞∫
0

dG 4−G sin2
(
c=
#g

)
4−

3
2 G

(
�0( G2 )

)2 {
�0( G2 ) − �1( G2 )

}  .
(9)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
6
7

Continuum extrapolation of the gradient-flowed color-magnetic correlator at 1.5)2 Luis Altenkort

B

B

Figure 1: Left: Normalized color-magnetic correlator as a function of flow time at fixed separations g) .
The symbols help to identify the corresponding g) to each data curve, and in addition depict a perturbatively
calculated upper limit for the flow time, forwhich the leading-order continuumflowed color-electric correlator
deviates less than 1% from its nonflowed counterpart [17]. Data points are connected by straight lines to guide
the eye. Right: Continuum extrapolation of the normalized color-magnetic correlator at one intermediate
flow time. Here the symbols play no special role other than identifying the g) . The extrapolated values are
connected vertically with a dashed grey line and the bootstrap mean of the linear fit is indicated with dotted
colorful lines.

3. Continuum extrapolation of the color-magnetic correlator

In the following we will show the results of nonperturbative calculations of the color-magnetic
correlator (Eq. 3) under gradient flow on the lattice, normalized to its leading-order perturbative
counterpart (Eq. 9). In the figures we use the notation � latt

�
for the lattice color-magnetic correlator,

and �cont
�

for the continuum-extrapolated one.
The lattice ensemble is identical to that of [5] and can be found in Tab. 1. The gauge action

is the standard Wilson action. For further details, also concerning the numerical integration of the
gradient flow equation, we refer to [5]. The continuum limit should only be taken on data that is
devoid of certain discretization-induced renormalization issues. In other words, we want to keep

0 (fm) 0−1 (GeV) #f #g V )/)2 #conf.
0.0215 9.187 80 20 7.0350 1.47 10000
0.0178 11.11 96 24 7.1920 1.48 10000
0.0140 14.14 120 30 7.3940 1.51 10000
0.0117 16.88 144 36 7.5440 1.50 10000

Table 1: Lattice spacings, lattice dimensions, V values, temperature and number of configurations used for
the calculations in this work. The ensemble is identical to the one used in [5]. The lattice spacing 0 is
determined via the Sommer scale A0 [14] with parameters taken from [15] and updated coefficients from [16].
We use A0)2 = 0.7457(45) [15].
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Figure 2: Left: Continuum-extrapolated color-magnetic correlator as a function of flow time at fixed
separation g) . A linear extrapolation in flow time is not applicable. Data points are connected by straight
lines to guide the eye. Right: The same as on the left but now as a function of separation at various fixed
flow times. Data points are connected by straight lines to guide the eye.

corrections proportional to 02/gF small, which in practice means that the smoothing radius of the
flow should be at least one lattice spacing of the coarsest lattice:

√
8gF ≈ 0.

The left panel of Fig. 1 shows the color-magnetic correlator as a function of flow time on the
finest lattice. The overall magnitude of the correlator is similar but slightly lower compared to
the color-electric correlator at the same temperature (cf. [5]). The symbols here depict perturba-
tively calculated upper limits for the flow time, up to which the leading-order flowed continuum
color-electric correlator deviates less than 1% from its nonflowed counterpart. We argue that the
perturbative calculations for the color-electric correlator can also serve as a first estimate for the
color-magnetic one, as their leading-order terms are identical at vanishing flow time [9]. Up to
these limits the flowed correlator data should still contain the correct (infrared) physics. Similar
to the color-electric correlator we observe an initial rising behavior that is followed by a region of
small to moderate flow time dependence. In the very end all meaningful physics are destroyed and
the correlator tends to zero.

On the right panel of Fig. 1 we show the continuum extrapolation at one moderate flow time
(
√

8gF) = 0.075), where the points of the coarser lattices have been obtained by interpolation with
cubic splines as in [5]. The leading discretization errors of the Wilson action are of order 02 which
is why the continuum extrapolation is a weighted linear fit of the data to

� latt
g,gF (#g)

�
norm
latt
g,gF=0(#g)

= < · #−2
g + 1, (10)

where < and 1 ≡ �cont
g,gF/�

norm
cont
g,gF=0 are the parameters to fit.

In Fig. 2 we finally show the continuum-extrapolated color-magnetic correlator: on the left as
a function of flow time, and on the right as a function of separation at some fixed flow times. In
the flow time region that could in principle be used for a flow-time-to-zero extrapolation we do not
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observe a linear dependence as in the case of the color-electric correlator. The reason for this is that,
in contrast to the color-magnetic correlator, the color-electric correlator has a vanishing anomalous
dimension and so in principle it is independent of the renormalization scale (∼ g−1

�
) at which it is

evaluated. In practice there is of course still a flow time dependence: in the window that is suitable
for a flow-time-to-zero extrapolation we observe gradual contamination from higher-dimension
operators. This contamination seems to be linear and so a flow-time-to-zero-extrapolation is rather
straightforward. The resulting zero flow time correlator is then fully renormalized and the leading
contribution to the heavy quark momentum diffusion coefficient can be extracted through spectral
reconstruction methods.

For the color-magnetic correlator life is not as easy: it has a nonvanishing anomalous dimension
[10] which introduces a logarithmic flow time dependence. Furthermore, it requires additional
renormalization to connect it to the 〈E2〉-corrections of heavy quark momentum diffusion. These
problems are out of the scope of this proceedings article and will be addressed in future studies.
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