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We review dilaton chiral perturbation theory (dChPT), the effective low-energy theory for the light
sector of near-conformal, confining theories. dChPT provides a systematic expansion in both the
fermion mass and the distance to the conformal window. It accounts for the pions and the light
scalar, the approximate Nambu—Goldstone bosons for chiral and scale symmetry, respectively.
A unique feature of dChPT is the existence of a large-mass regime in which the theory exhibits
approximate hyperscaling, while the expansion nevertheless remains systematic. We discuss
applications to lattice data, presenting successes as well as directions for future work.
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Figure 1: Hadron masses as a function of fermion mass, all in units of Fy, in the SU(3) gauge theory with 8
fundamental flavors, from Ref. [2].

1. Introduction

Let us start with a look at spectral data for the SU(3) gauge theory with Ny = 8 fundamental
fermions obtained by the LSD collaboration [1, 2], shown in Fig. 1. In comparison with QCD,
several salient differences stand out: First, we note the presence of a stable 0** state, denoted by
the points labeled o, with a mass virtually degenerate with the pions, over this mass range. Second,
within errors, the spectrum shows hyperscaling: hadronic mass ratios are essentially independent of
the fermion mass. In addition, pion “taste splittings” associated with the use of staggered fermions
in all these simulations, i.e., non-degeneracies in the pion spectrum due to scaling violations, behave
very differently as a function of the fermion mass in comparison with QCD (not shown in the figure).
Similar results have been found in Ref. [3] by the LatKMI collaboration for the same theory, and in
the SU(3) theory with two sextet fermions by the LatHC collaboration [4, 5], or with four light and
six [6] or eight [7] heavy fundamental fermions. In this talk, we will discuss to what extent these
data are decribed by tree-level dilaton Chiral Perturbation Theory (dChPT).

After a brief review of dChPT and its lowest-order lagrangian, we will explain the existence
of a “large-mass” regime in which dChPT predicts approximate hyperscaling, as seen in Fig. 1.
Going beyond hyperscaling, we will then apply dChPT to fit the LSD and LatKMI data, including
the measured staggered taste splittings. We conclude with a brief discussion of what might be next.

2. Lowest-order dChPT

Dilaton ChPT is based on the following set of assumptions [8, 9]:

» Every gauge theory below the conformal sill contains Nambu—Goldstone bosons, or “pions,”
associated with the spontaneous breaking of chiral symmetry. The pions become massless in
the limit m — 0, where m is the (degenerate) fermion mass.

 Scale invariance gets restored in the infrared as we approach the conformal window, with the
trace anomaly being proportional to the distance to the conformal window. In the Veneziano
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limit Ny — oo, N. — oo, with ny = Ny /N, fixed, this happens when ny approaches a critical
value n} from below. The difference ny — n} is a new small parameter.

* The theory contains a dilaton, i.e., a Nambu—Goldstone boson associated with scale symmetry
breaking, which becomes massless in the double limit ny — n}‘; — O0andm — 0.

* In addition, some technical assumptions on the dilaton potential are needed, see Ref. [10].

With these assumptions, one can prove that a systematic power counting in the small parameters
p2~m~nf—n;~1/Nc (1)
exists, and construct the lowest-order (O(p?)) lagrangian,
L = i e t(0,270,%) + % fre¥ oo, T 2)
—%fﬂanmeG_”*)Ttr(Z +20) + 2B e* ¢ (T - %) )

Here ¥ = exp(2in/ f;) is the non-linear pion field and 7 is the dilaton field. c¢; is a parameter

*

proportional to ny — e, of order p? in our power counting. At leading order, five low-energy
constants (LECs) appear: fr -, Bxr r, and v, the mass anomalous dimension at the infra-red fixed
point at the conformal sill. For a detailed discussion of the lagrangian and the power counting, see
Ref. [8]. We have used the freedom to shift the field 7 such that v(m) = (r) vanishes for m = 0, at
this order.

The saddle point equation for the classical solution v(m) is

2
- v(m)e(1+7*)v(m) , M= 4fT—BT . (3)
aM ngﬂNf(:; = Y+)
The tree-level pion and dilaton masses, and their decay constants, are, using Eq. (3),
M2 = 2Bume1 = 2B cf My(m)e* ™ | 4)

M? = 4B.c;e®"™ (1 + (1 +y.)v(m)) ,
Frr = fﬂ,TeV(m) :

Unlike in ordinary ChPT, here the tree-level decay constant(s) depend on the fermion mass via the
factor e"("™).

3. The small- and large-mass regimes

An important observation is that in our power counting the ratio CliM is parametrically O(1).
But this ratio can still be small, corresponding to the small-mass regime, or large, corresponding to
the large-mass regime.

In the small-mass regime, HLM < 1,and v oc m while ¢” = 1+O(m). One has M2 = 2B, m <
MT2 = 4B;cy o« |ny — n"}'}l. Even though, relative to the pions, the dilaton decouples, its mass still
remains parameterically smaller than that of all other hadrons. For energies below the scale set by
the dilaton mass the physics of pions only is described by standard ChPT.
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The large-mass regime, (,ILM > 1, is more interesting [10]. In Eq. (3) the exponential
dominates, and this equation has the approximate solution

1/1+y.
vim) _ [ 5
e (01/\/() . &)

In turn, this implies that Eq. (4) predicts approximate hyperscaling:
My ~ My ~ Fy ~ Fp ~ My ~m'/'7 6)

which can also be shown to apply to other hadron masses generically denoted as M. dChPT
thus predicts that, in the large-mass regime, the theory behaves approximately as a mass-deformed
conformal theory. Given the spectral results shown in Fig. 1, this is the first success of dChPT. The
intuitive reason for hyperscaling is that, with m > ¢; M, the fermion mass is the dominant source
of the breaking of scale invariance.

While all particle masses exhibit hyperscaling, the pion and the dilaton are still parametrically
the lightest particles in the theory: M, ~ M, ~ c1, which, by assumption, is a small parameter. In

fact,
2

m
. ~ ¢t log 2 7
GnF,p ~ Crvm) ~erlog 7o ()

which implies that the expansion underlying dChPT is systematic as long as ¢ log CliM < 1, even
though m/AM may be large. By contrast, ordinary ChPT for QCD is only valid when m is small
relative to the infrared scale of the (massless) theory.

4. Fits to LSD data [1, 2]

One would like to test dChPT beyond the semi-quantitative observation of hyperscaling. Here
we review some of the fits performed in Ref. [11] of the tree-level predictions to data for the pion mass
and decay constant, as well as the dilaton mass, as a function of the fermion mass.! The ensembles of
Ref. [2] all have the same bare coupling, and fermion masses 103am = (1.25, 2.22, 5.00, 7.50, 8.89).
In Fig. 2 we show results of one of the fits of Ref. [11], using data for M2/F2, aF, and M2 /F? at
the lowest four am values. The fit has a p-value of 0.89. Including also the largest mass leads to a
less good fit, but the p-value is still 0.29. We conclude that tree-level dChPT provides an excellent
description of the LSD data.?

The parameters controlling the mass dependence are well determined by these fits: we find
v« = 0.94(2) and aB, = 2.1(1). In contrast, finding a f;; requires a long extrapolation to the chiral
limit, and the result of the fits is a f, = 0.0006(3).

We emphasize that the data all have 0.02 < aF,(m) < 0.06, with F;L > 1 and certainly
M, L > 1, so that the data are all in the p-regime. However, as already follows from the approx-
imate hyperscaling, the LSD fermion masses are solidly in the large-mass regime, hence the long
extrapolation needed to reach the chiral limit. This long extrapolation may make the value of a f;
very sensitive to higher orders in dChPT, even if next-to-leading order (NLO) corrections at the

IThe dilaton decay constant was not measured in Refs. [1-3].
2For other applications of tree-level dChPT, see Refs. [5, 6].
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Figure 2: M2/F2, aF, and M?|F? as a function of the bare fermion mass in lattice units, am. Taken from

Ref. [11].

LSD masses are relatively small. The (tentative) conclusion is that reaching the chiral limit while
keeping f;L = 1 would require unrealistically large volumes, if the same bare coupling is kept.

The LSD collaboration also measured two of the staggered pion taste splittings (specifically,
the “axial” and “tensor” ones). The taste splittings look very different from those found in QCD,
which are explained well by the staggered extension of ordinary ChPT. Once we extend dChPT to
include the discretization effects of staggered fermions (SAChPT for short), we find that these taste
splittings can be quantitatively understood using SAChPT. For details, see Ref. [11]; we will show
an example of taste splittings in the next section.

5. Fits to LatKMI data [3]

Next, we consider fitting dChPT to the data of Ref. [3]. The LatKMI collaboration considered
the same theory, with fermion masses 10%am = (1.2, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0),
significantly larger than those of the LSD collaboration. Since the LatKMI and LSD collaborations
used different lattice actions, and both collaborations did simulations at a single value of the bare
coupling, we cannot compare the two data sets in physical units. In other words, we do not know
the relative size of the LatKMI and LSD lattice spacings.

In Ref. [14] we found that we cannot fit the LatKMI data over their full mass range with
tree-level dChPT. Fits of subsets suggest that NLO corrections will have to be taken into account.
However, at NLO the effective theory has a large number of new LECs [8], and there are insufficient
data to resolve these, even if the actual fits contain a smaller number of linear combinations of the
new LECs.
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Figure 3: The running mass anomalous dimension y(m), obtained from various fits of the LatKMI data, as
a function of aF;(m), see text. Taken from Ref. [14].

Instead, we found that the data are well described with an m-dependent mass anomalous
dimension?

y(m) = yo = bv(m) + cv*(m) . ®)

For a detailed description of the fits we refer to Ref. [14]. Here we just show the results we obtain
for y(m) of Eq. (8), in Fig. 3. The blue band shows a fit (p-value = 0.48) to data at all but the
largest mass of the LatKMI range, with all three parameters, g, b and c¢. The magenta band shows
a fit (p-value = 0.19) with the two largest masses omitted, and ¢ = 0. For comparison, the gray
band represents y. = 0.94(2) obtained from the LSD data. The actual data all lie in the range
0.045 < aF,; < 0.12, where the two bands overlap, as expected. Again, the LatKMI masses are in
the large-mass regime, requiring a long extrapolation to the chiral limit. These results corroborate
the sensitivity of the chiral limit to higher orders, even if those higher orders can be small in the
range of the data. Indeed, small corrections to v(m) over a limited m-interval make a larger effect
on the “hyperscaling factor” ¢"™ in the tree-level expressions (4), which magnifies if m is taken
outside the range of the actual data.

To conclude this section, we show in Fig. 4 a fit of the taste splittings to tree-level SAChPT
augmented by the varying y(m) of Eq. (8).# These taste splittings behave very different from those
in QCD with staggered fermions, where the taste splittings are essentially independent of am. The
goodness of the fit is a successful test of the dChPT framework.

6. Conclusion

We identified a “large-mass regime” in dChPT that has no equivalent in ordinary ChPT. This is

1/cy

the regime with cy M < m < ¢y Me'/€1. Much like a mass-deformed infrared-conformal theory,

3In Ref. [14] we proved that this choice is still consistent with the Ward-Takahashi identities for scale invariance.
One can think of Eq. (8) as arising from a partial resummation of higher orders.

4Ref. [3] measured taste splittings only for a subset of seven fermion masses with a maximum value 0.08. Setting
¢ = 0 yields a good fit (p-value = 0.44) to tree-level SAChPT with y(m) of Eq. (8).
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Figure 4: Fit of tree-level SAChPT to the taste splittings of Ref. [3]. Taken from Ref. [14].

the large-mass regime of a “walking” theory exhibits approximate hyperscaling, while the expansion
underlying dChPT remains systematic, thanks to the smallness of ¢; o |nf — nj’;l, the distance to
the conformal sill. We found that current simulations of the Ny = 8, SU(3) theory are deep in the
large-mass regime.

Consequently, reaching the chiral limit from the data of Refs. [2, 3] requires a very long
extrapolation. This extrapolation appears to be very sensitive to the mass range used in the fits, as
well as to higher orders in dChPT. For example, because of this sensitivity, the chiral-limit value
afr = 0.0006(3) found from the LSD data may be afflicted with a larger systematic error than
reflected by the statistical fit error qouted above. It is thus very difficult to determine whether a f;
is actually different from zero! Likewise, it is difficult to obtain a precise value for ¢; M. The
difficulty of controlling the long extrapolation raises the intriguing question whether, effectively,
dChPT may also apply inside the conformal window, as long as the theory is mass-deformed.

Both Refs. [2] and [3] measured the dilaton mass, finding it to be nearly degenerate with the
pions. But the errors are so large that the dilaton mass has little influence on the fit, as can be seen in
Fig 2. Given the questions raised above it would be helpful if more precise data become available,
especially at the lower fermion-mass range. In particular, this might allow for the probing of NLO
corrections. Also, the size of the taste splittings indicates that scaling violations are large, and it
would be nice to add another lattice spacing to study the approach to the continuum limit, about
which no information is available at present.

We end with a separate comment. In Refs. [12, 13], a more general class of dilaton potentials

Va() o (1= 2t ©)
T) o - —e
MU Al T A
was considered. For A — 4, one recovers the dilaton potential in Eq. (2), while for A = 2 one
obtains the potential for the o-model. However, as we pointed out in Ref. [14], for values of A
not close to 4, there is no consistent power counting, and thus the lagrangian with this generalized
potential does not constitute an effective field theory, contrary to what is claimed in Ref. [13].
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