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We present a new method aiming at a non-perturbative, model-independent determination of
the momentum dependence of the form factors entering semileptonic decays using unitarity and
analyticity constraints. We extend the original proposal and, using suitable two-point functions
computed non-perturbatively, we determine the form factors at low-momentum transfer q2 from
those computed explicitly on the lattice at large q2, without making any assumption about their
q2 dependence. As a training ground we apply the new method to the analysis of the lattice data
of the semileptonic D → K`ν` decays obtained both at finite values of the lattice spacing and at
the physical pion point in the continuum limit. We show that, starting from a limited set of data
at large q2, it is possible to determine quite precisely the form factors in a model independent
way in the full kinematical range, obtaining a remarkable agreement with the direct calculation of
the form factors. This finding opens the possibility to obtain non-perturbatively the form factors
entering the semileptonic B decays in the full kinematical range.
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1. The Dispersive Matrix method

The Fourier transform of the T-product defines the following Hadronic Vacuum Polarization
(HVP) tensors:

Π
µν
V (q) = i

∫
d4x eiq ·x 〈0|T{Vµ†(x)Vν(0)}|0〉 (1)

= (qµqν − gµνq2)Π1−(q2) + qµqν Π0+(q2) ,

Π
µν
A
(q) = i

∫
d4x eiq ·x 〈0|T{Aµ†(x)Aν(0)}|0〉 (2)

= (qµqν − gµνq2)Π1+(q2) + qµqν Π0−(q2) ,

where Vµ = c̄γµb , Aµ = c̄γµγ5b are the weak currents and the subscripts 0±,1± represent spin-
parity quantum numbers of the intermediate states.
The quantities Π0± ,Π1∓ are called polarization functions. In particular, the term proportional toΠ0+

(Π0−) represents the longitudinal part of the HVP tensor with vector (axial) four-currents, while the
term proportional to Π1− (Π1+) is the transverse contribution to the HVP tensor with vector (axial)
four-currents.

1.1 The starting point

The imaginary parts of the longitudinal and transverse polarization functions are related to
their derivatives with respect to q2 by the dispersion relations

χ0+(q2) ≡
∂

∂q2 [q
2
Π0+(q2)] =

1
π

∫ ∞

0
dz

z ImΠ0+(z)
(z − q2)2

,

(3)

χ1−(q2) ≡
1
2

(
∂

∂q2

)2
[q2
Π1−(q2)] =

1
π

∫ ∞

0
dz

z ImΠ1−(z)
(z − q2)3

.

(4)

In what follows we will denote by χ a generic susceptibility.
By inserting a complete set of states with the same quantum numbers of a generic current J we
have1

ImΠ0±,1∓ =
1
2

∑
n

∫
dµ(n)(2π)4δ(4)(q − pn)|〈0|J |n〉|2 , (5)

where dµ(n) is the measure of the phase space for the set of states n. By taking in Eq. (5) only the
contribution of the lightest state and using analyticity, we can rewrite the dispersion relations for
χ(q2) as

1
2πi

∫
|z |=1

dz
z
|φ(z, q2) f (z)|2 ≤ χ(q2) , (6)

where f (z) is the generic form factor and the kinematical functions φ(z, q2) for the different form
factors entering B→ D(∗) decays are defined in Eqs. (40)-(42) of Ref. [1].

1For simplicity we omit Lorentz indices and other complications that are immaterial for the present discussion.
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1.2 Inner product formalism and the matrix

Let us introduce an inner product defined as

〈g |h〉 =
1

2πi

∫
|z |=1

dz
z
ḡ(z)h(z) , (7)

where ḡ(z) is the complex conjugate of the function g(z). Then, the inequality (6) can simply be
written as

0 ≤ 〈φ f |φ f 〉 ≤ χ(q2) , (8)

where we have also used the positivity of the inner product.
Following Refs. [3]-[4], we define the function gt (z) as

gt (z) ≡
1

1 − z̄(t)z
, (9)

where z̄(t) is the complex conjugate of the variable z(t) defined in Eq. (32) of [1] and z is the
integration variable of Eq. (7). It is then straightforward to show that

〈gt |φ f 〉 = φ(z(t), q2) f (z(t)) , 〈gtm |gtl 〉 =
1

1 − z̄(tl)z(tm)
. (10)

Let us introduce the matrix

M =

©­­­­­­­«

〈φ f |φ f 〉 〈φ f |gt〉 〈φ f |gt1〉 · · · 〈φ f |gtn 〉
〈gt |φ f 〉 〈gt |gt〉 〈gt |gt1〉 · · · 〈gt |gtn 〉

〈gt1 |φ f 〉 〈gt1 |gt〉 〈gt1 |gt1〉 · · · 〈gt1 |gtn 〉
...

...
...

...
...

〈gtn |φ f 〉 〈gtn |gt〉 〈gtn |gt1〉 · · · 〈gtn |gtn 〉

ª®®®®®®®¬
. (11)

In a numerical simulations of lattice QCD the values t1, · · · , tn correspond to the squared 4-
momenta at which the FFs have been computed non-perturbatively and that will be used as inputs
for constraining the FFs in regions non accessible to the calculation. Differently, the point t is the
unknown point where we want to extract the value of the FFs.

Note that the first matrix element in (11) is the quantity directly related to the susceptibility
χ(q2) through the dispersion relations. To be more specific, in the case of B→ D decays, in terms
of the longitudinal and transverse susceptibilities χ0+(q2) and χ1−(q2) we have that:

〈φ0 f0 |φ0 f0〉 ≤ χ0+(q2) ,

〈φ+ f+ |φ+ f+〉 ≤ χ1−(q2) , (12)

where φ0,+ are kinematical functions whose definition can be in Eq.s (40)-(42) of Ref. [1].

1.3 The bounds

The positivity of the inner products (10) guarantees that the determinant of the matrix (11) is
positive semi-definite, namely

det M ≥ 0. (13)
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This condition leads to the following unitarity constraints on the form factor f (t)

flo(t, q2) ≤ f (t) ≤ fup(t, q2) , (14)

where

flo(up)(t, q2) ≡
−β(t, q2) ∓

√
∆1(t)∆2(q2)

α φ(z(t), q2)
. (15)

The quantities α, β and γ are determinants of minors of the matrix M defined in Eq. (45) of [1].
Note that the positivity of the inner product implies that α and ∆2 are t-independent, i.e. they are
given numbers once the susceptibility χ(q2) and the lattice QCD inputs are chosen. On the contrary,
β and ∆1 are t-dependent. Moreover, only the quantities β and ∆2 depend on the chosen value of
q2. At this point, since ∆1 ≥ 0 by construction, the constraint (14) will be acceptable only when
∆2 ≥ 0. We stress that the unitarity filter ∆2(q2) ≥ 0 is t-independent, which implies that, when it
is not satisfied, no prediction for f (t) is possible at any value of t.

Thus, by using a direct lattice measurement of the form factors at the points t1, t2, . . . , tn and the
two-point functions of the suitable currents we can constrain the form factors in regions of momenta
which for several reasons may not be accessible to lattice simulations. The application to the case
of the semileptonic D→ K decays will be presented in Section 3.

2. The novelties of our work

The DMmethod allows to reconstruct the interval of the possible values of the form factor in a
generic point t in a total model independent way and without any assumption or truncation starting
from, also few, known points and the susceptibilities. With respect to the proposal by L. Lellouch
and other previous studies, the main novelties in this work are as follows:

1. We determined non perturbatively all the relevant two-point current correlation functions on
the lattice which are fundamental to implement the dispersive bounds (i.e. the susceptibilities
χ that appear in the matrix). We also proposed to reduce discretisation errors of the two-
point correlation functions by using a combination of non-perturbative and perturbative
subtractions which were found very effective in the past;

2. A simpler treatment of the lattice uncertainties with respect to the method proposed in Ref.
[4].

For the first point we refer to the detailed discussion contained in [1]. We will only discuss here the
second novelty.

2.1 Statistical uncertainties and Kinematical Constraint

The machinery discussed in the previous Section allows us to compute the lower/upper bounds
of f0(+)(t), once we have chosen our set of input data, i.e. {χ0+(1−), f0(+)(t1), · · · , f0(+)(tn)}. Thus,
the input data set is made of 2n+ 2 quantities: the n values of the scalar form factor f0, the n values
of the vector form factor f+ and the two susceptibilities χ0+ and χ1− . For sake of simplicity we are
considering the same number of data points for both the scalar and the vector form factors evaluated
at the same series of values ti (i = 1, · · · , n). The crucial question is, however, how to propagate the
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uncertainties related to these quantities into the evaluation of the FFs f0(+)(t) at a generic value of
t. To answer this question, we propose a method different from the one described in Ref. [4]. We
start by building up a multivariate Gaussian distribution with mean values and covariance matrix
given respectively by { f0(t1), · · · , f0(tn), f+(t1), · · · , f+(tn)} and Σi j = ρi jσiσj , where f0(+)(ti) are
the form factors extracted from the three-point functions in our numerical simulation on a given
set of gauge field configurations, σi are the corresponding uncertainties, and ρi j is their correlation
matrix (including also correlations between the two form factors). Note that if we have direct access
to the data of the simulations the susceptibilities are properly correlated.

For each jackknife/bootstrap event we consider the (n + 1) × (n + 1) matrices M0 and M+

(see Eq. (11)) corresponding to the scalar and vector form factors, respectively. Since ∆0
1 = ∆

+
1 is

non-negative by definition, then both∆0
2 and∆

+
2 should be positive (see Eq. (15)). Thus, we compute

∆
0(+)
2 and verify their signs. If either ∆0

2 or ∆+2 results to be negative, then the event is eliminated
from the sample. From the physical point of view, this step can be read as a consistency check
between all the input data, namely the susceptibilities and the FFs for that particular bootstrap. At
the end of the procedure, we will be left with Ñboot ≤ Nboot events.
At t = 0 the FFs f0 and f+ are subject to the constraint

f0(0) = f+(0). (16)

In order to satisfy this condition, in the subset of the Ñboot events, we select only the N∗
boot
≤ Ñboot

events for which the dispersive bands for f0 and f+ overlap each other at t = 0. This corresponds to
impose the conditions

f0,up(0, q2) > f+,lo(0, q2) ,

f+,up(0, q2) > f0,lo(0, q2) , (17)

where flo,up(t, q2) were defined in Eq. (15) for a generic form factor f . The above condition selects
N∗
boot
≤ Ñboot events. Following Ref. [4] for each of the N∗

boot
events we define

f ∗lo(0) = max[ f+,lo(0), f0,lo(0)] ,
f ∗up(0) = min[ f+,up(0), f0,up(0)] , (18)

so that, putting f (0) ≡ f0(0) = f+(0), one has

f ∗lo(0) ≤ f (0) ≤ f ∗up(0) . (19)

We now consider the form factor f (0) to be uniformly distributed in the range given by Eq. (19)
and we add it to the input data set as a new point at tn+1 = 0. To be more precise, for each of
N∗
boot

events we generate N0 values of f (0) with uniform distribution in the range [ f ∗
lo
(0), f ∗up(0)],

obtaining a new sample having Nboot = N∗
boot
×N0 events, each of them satisfying by construction

both the unitarity filters ∆0(+)
2 ≥ 0 and the kinematical constraint (16).

We then consider two modified (n+2)× (n+2)matrices, M0
C
and M+C , that have one more row

and one more column with respect to matrices M0 and M+ and contain the common form factor
f (tn+1 = 0) and then the information of the kinematical constraint.
For any point t at which we want to predict the allowed dispersive band of the form factor f (t)

5
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(which can be either f0(t) or f+(t)) without directly computing it in our simulation, we compute the
matrix MC and using Eq. (15) we get flo(t) and fup(t). This can be done for each of the N0 events.
Let us indicate the result of the k-th extraction by f k

lo
(t) and f kup(t), respectively. Then, for each of

the N∗
boot

events the lower and upper bounds f lo(t) and f up(t) can be defined as

f lo(t) = min[ f 1
lo(t), f 2

lo(t), . . . , f N0
lo
(t)] ,

f up(t) = max[ f 1
up(t), f 2

up(t), . . . , f N0
up (t)] . (20)

2.2 Recombination of the Bootstrap events

At this point we can generate the bounds of the form factor f (t). To achieve this goal, we
combine all the N∗

boot
results f

i

lo,up(t) (i = 1, · · · , N∗
boot

) to generate the corresponding histograms
and fit them with a Gaussian Ansatz, as it is shown in Fig. 1 in an illustrative case. From these fits
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Figure 1: Histograms of the values of f up (upper panel) and f lo (lower panel) for the bootstrap events that
pass the unitarity filter in the case of the vector form factor f+(t = 0 GeV2) of the D→ K transition.
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we extract the average values flo(up)(t), the standard deviations σlo(up)(t) and the corresponding
correlation factor ρlo,up(t) = ρup,lo(t). It is understood that the above procedure is applied for both
the scalar f0(t) and the vector f+(t) form factors.

After these steps, for any choice for t we obtain from the bootstrap events (pseudogaussian)
distributions for f0,lo(t), f0,up(t), f+,lo(t) and f+,up(t) as well as the corresponding mean values,
standard deviations and correlations. We combine them according to the procedure described in
Sec. V C of [1] that leads to the final values of the form factor f (t) and its variance σ2

f (t) as

f (t) =
flo(t) + fup(t)

2
, (21)

σ2
f (t) =

1
12

[
fup(t) − flo(t)

]2
+

1
3

[
σ2
lo(t) + σ

2
up(t) + ρlo,up(t)σlo(t)σup(t)

]
. (22)

3. Results

In this Section we discuss two applications of the DMmethod that show that not only it contains
many advantages but it is also very effective in making predictions. In particular, we show that from
the knowledge of the form factors in the large q2 region and of the susceptibilities it is possible to
determine the form factors with good precision, without making any assumption on their functional
dependence on the squared momentum transfer q2.
As an illustration and a test of the method we used the recent results calculation of the form factors
in D → K decays from Ref. [2]. In the analysis, discussed in paragraph 3.1, we make use directly
of the results obtained at finite values of the lattice spacing and for unphysical pion masses.
We also introduce in paragraph 3.2 a further application of the method, not present in Ref. [1] and
based on the results of Ref. [6].

3.1 Test of the method in the D→ K case

Since we have access to the original data of Ref. [2], we can redo the analysis of that paper
having computed on the same ensembles also the susceptibilities. The goal is now to implement
the matrix method directly on the lattice data points bootstrap by bootstrap and make a totally
model-independent extraction of the form factors following the procedure described in the previous
section.

For the D → K decay the lattice data of Ref. [2] (already interpolated to the physical charm
and strange quark masses) cover all the kinematical region in q2. The idea is to mimic what happens
in lattice calculations of B decays where all the lattice data are concentrated at q2 ∼ q2

max . Thus,
we have chosen to use, for each form factor, only two points at large values of q2 corresponding
to the D-meson at rest, shown as red markers in Fig. 2. The great advantage of studying the
D→ K decay is that we can compare our results obtained with the unitarity procedure to the ones
obtained from a direct calculation of the form factors. We applied the matrix method described
in the previous Sections to the determination of the FFS using 31 bins in [−0.5GeV2, q2

max]. The
susceptibilities χ0+,1− are those computed non perturbatively for each ensemble. They have been
obtained by eliminating the one particle state both for χ0+ and χ1− . Thus, the kinematical functions
φ0(+) have been modified accordingly to Eq. (42) of [1] by including respectively the D∗s and the
D∗0(2400) poles. Their masses have been calculated on the same ensembles (see SectionVII B

7
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of [1]). To illustrate the procedure we show in Fig. 2 the comparison between our predictions for
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2) points

f0(q
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Figure 2: The D→ K form factors f+(q2) (orange band) and f0(q2) (cyan band) obtained in this work and
in Ref. [2] (dots and diamonds) in the case of the ETMC ensembles B25.32 (upper panel) and D30.48 (lower
panel). The red markers (two points at large values of q2 for each form factor) have been used as inputs for
our study, while the other ones are not. The lattice data of Ref. [2] are interpolated to the physical values of
the charm and strange quark masses determined in Ref. [5].

the allowed bands of the form factors, obtained by using as inputs only the points denoted as red
markers at large q2, and the rest of the lattice points that are not used as input in our analysis in
the case of the ETMC ensembles B25.32 and D30.48 (see Appendix B of [1] for details on the
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simulations). The agreement is excellent in all the range.
These results suggest that it will be possible to obtain quite precise determinations of the form
factors for B decays by combining form factors at large q2 with the non perturbative calculation of
the susceptibilities.
In Fig. 3 we present the final bands for the vector and scalar form factors, extrapolated to the physical
value of the pion mass and to the continuum limit. The bands agree with the results of Ref. [2] and
exhibit a good precision. This demonstrates that the dispersive matrix method allows to determine
the semileptonic form factors in their whole kinematical range with a quality comparable to the one
obtained by the direct calculations, even if only a quite limited number of input lattice data for each
FF (and the non-perturbative susceptibilities) are used2.
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f0(q
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D → K final bands

Figure 3: Momentum dependence of the form factors f+(q2) (orange band) and f0(q2) (cyan band), extrap-
olated to the physical point and to the continuum limit, obtained using the dispersive matrix method of this
work. The markers represent the lattice results computed in Ref. [2].

3.2 A further application

Recently the D→ K form factors have been computed quite precisely in [6]. In particular, for
q2 = 0 they find

f (0) = 0.7380 ± 0.0043. (23)

Using the results given in Table III of [6] we have evaluated eight synthetic points for each form
factor. Then, we have applied our dispersive analysis using as inputs only the three data at the largest
values of q2. The results are shown in Fig. 4 in the whole kinematical range. It can be clearly
seen that, although we make use of few data points in a limited range of q2, our dispersive bands

2We have explicitly checked that the results at q2 = 0 shown in Fig. 2 are stable against the addition of (red) points
provided they are taken in the large q2 region.
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q2 (GeV2 )
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FF

Figure 4: The D → K form factors f+(q2) and f0(q2) versus the squared 4-momentum transfer q2. The
blue and red markers represent a total of eight synthetic data points for each form factor evaluated using the
results given in [6]. The grey and purple bands are the results of our dispersive approach obtained using as
inputs only the three blue points at the largest values of q2.

are remarkably precise and agree with the direct lattice results in the whole kinematical range. In
particular, for q2 = 0 we get

f (0) = 0.7384 ± 0.0052. (24)

The above findings suggest that, thanks to the DM method, it may be a good strategy to use
computing time for improving the precision of few data points at the largest values of q2.

4. Conclusions and outlook

Wecan conclude that theDispersiveMatrixmethod is very effective and precise in its prediction.
It has three main advantages:

1. The method doesn’t rely on any assumption about the functional dependence of the FF on the
momentum transferred. Then, it is model independent;

2. It’s entirely based on first principles. The susceptibilities and the form factors are non
perturbative and we don’t rely on any series expansion;

3. It gives very precise and accurate predictions in the whole kinematical range of values of q2

even if we use few data inputs at the largest values of q2.

The DMmethod has been already successfully applied in [7–9] and other applications are underway.
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