
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
3
8
3

Approaching the master-field:
Hadronic observables in large volumes

Marco Cè,𝑎,∗ Mattia Bruno,𝑏,𝑐 John Bulava,𝑑 Anthony Francis,𝑒,𝑎 Patrick Fritzsch, 𝑓

Jeremy R. Green, 𝑓 ,𝑎 Maxwell T. Hansen𝑔 and Antonio Ragoℎ,𝑎
𝑎Department of Theoretical Physics, CERN, 1211 Geneva 23, Switzerland
𝑏Dipartimento di Fisica “Giuseppe Occhialini”, Università degli Studi di Milano-Bicocca, Piazza della
Scienza 3, 20126 Milan, Italy
𝑐INFN - Sezione di Milano Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
𝑑Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen, Germany
𝑒Albert Einstein Center for Fundamental Physics and Institute for Theoretical Physics, Universität Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland
𝑓 School of Mathematics and Hamilton Mathematics Institute, Trinity College Dublin, Dublin 2, Ireland
𝑔Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh,
Edinburgh EH9 3FD, United Kingdom
ℎCentre for Mathematical Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom

E-mail: marco.ce@cern.ch

The master-field approach to lattice QCD envisions performing calculations on a small number
of large-volume gauge-field configurations. Substantial progress has been made recently in the
generation of such fields, and this must be joined with measurement strategies that take advantage
of the large volume.
In these proceedings, we describe how to compute simple hadronic quantities efficiently and
estimate their errors in the master-field approach, i.e. by studying cross-correlations of observables
on a single configuration. We discuss the scaling of the uncertainty with the volume and compare
extractions based on momentum-projected and position-space two-point functions. The latter show
promising results, already at intermediate volumes, but come with additional technical complexities
such as a more complicated manifestation of boundary effects, which we also address.
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1. Introduction

The term master-field encapsulates the idea of estimating the expectation values of observables
using the translation averages over a single (or a few) representative gauge field(s), the master-
field(s) [1], instead of traditional estimators over an ensemble of gauge field configurations generated
with Monte Carlo (MC) methods. This relies on the stochastic locality of the fields, that is, the fact
that thanks to the mass gap, distant regions of a physically large lattice fluctuate largely independently.
Clearly, the realization of this idea requires lattices that have a size that is large compared with the
finite correlation length.

Thanks to a number of algorithmic achievements [2], combined with the increase of the available
computational resources, simulations are currently underway for dynamical QCD lattices with
volumes up to (18 fm)4 and 𝑚𝜋𝐿 ≈ 25, see Ref. [3]. This opens the door to actual practical
computations based on translation averages. However, while master-field computations of bosonic
quantities in Yang-Mills theory have already being performed [4], the application to hadronic
observables introduces additional challenges. Here we present progress in solving the problem,
reviewing the theory of master-field errors and studying the extraction of simple hadronic quantities,
with a focus on position-space correlation functions and performing numerical tests on a traditional
MC ensemble of lattice configurations with a large volume.

2. Master-field errors

In the master-field approach, the MC ensemble average of a local field 𝑂 (𝑥) is replaced as an
estimator of 〈𝑂 (𝑥)〉 by the translation average [1]

⟪𝑂 (𝑥)⟫ = 1
𝑉

∑︁
𝑧

𝑂 (𝑥 + 𝑧), 〈𝑂 (𝑥)〉 = ⟪𝑂 (𝑥)⟫ + O
(
𝑉−1/2

)
. (1)

An error on this estimator can be derived by writing down the field-theoretical expression for the
variance of its distribution, that is, the connected correlator of 𝑂 (𝑥),

𝜎2
⟪𝑂⟫(𝑥) =

〈
[⟪𝑂 (𝑥)⟫ − 〈𝑂 (𝑥)〉]2〉 = 1

𝑉

∑︁
𝑦

〈𝑂 (𝑦)𝑂 (0)〉𝑐

=
1
𝑉


∑︁
|𝑦 | ≤𝑅

〈𝑂 (𝑦)𝑂 (0)〉𝑐 + O
(
e−𝑚𝑅

)
=

1
𝑉


∑︁
|𝑦 | ≤𝑅

⟪𝑂 (𝑦)𝑂 (0)⟫𝑐 + O
(
e−𝑚𝑅

)
+ O

(
𝑉−1/2

) ,
(2)

where in the second line we used the fact that𝑂 (𝑥) is a local field and its connected correlator decays
exponentially with spacetime separation, and in the last line we replaced the field-theoretical average
with the master-field translation average introducing an error suppressed with the inverse square root
of the volume.
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If 𝑛 master-fields are available, a similar error formula is obtained for the translation average of
the ensemble mean �̄� (𝑥),

𝜎2
⟪�̄�⟫(𝑥) =

1
𝑛
𝜎2
⟪𝑂⟫(𝑥) =

1
𝑉


∑︁
|𝑦 | ≤𝑅

⟪�̄� (𝑦)�̄� (0)⟫
𝑐
+ O

(
e−𝑚𝑅

)
+ O

(
𝑉−1/2

) . (3)

2.1 Hadronic observables

Simple hadronic quantities such as the masses of stable hadrons or meson decay constants, as
well as more complex ones such as hadronic contributions to 𝑔− 2 of the muon and real-time spectral
functions, all generally require the computation of quark propagators from the solution of the Dirac
equation. For instance, consider the meson propagator with a single connected Wick contraction,

𝐶ΓΓ′ (𝑥, 0) = [�̄�Γ𝑑] (𝑥) [𝑑Γ′𝑢] (0) = − tr
{
𝛾5Γ 𝐷

−1(𝑥, 0) Γ′𝛾5 𝐷
−1(𝑥, 0)†

}
. (4)

The quark propagator 𝐷−1(𝑥, 0) is non-zero at any 𝑥 in spacetime, so it is not an ultralocal field
but, empirically, on each representative gauge field its norm ‖𝐷−1(𝑥, 0)‖ ∝ e−𝑚𝜋 |𝑥 |/2 for large |𝑥 |,
which localizes the quark propagator field to a region ∼ 𝑚−1

𝜋 .
Applying the master-field treatment to it, we have a translation-average estimator ⟪𝐶 (𝑥, 0)⟫1

whose error can be estimated according to Eq. (2)

〈
[⟪𝐶 (𝑥, 0)⟫ − 〈𝐶 (𝑥, 0)〉]2〉 = 1

𝑉


∑︁
|𝑦 | ≤𝑅

⟪𝐶 (𝑥 + 𝑦, 𝑦)𝐶 (𝑥, 0)⟫𝑐 + O
(
e−𝑚𝑅

)
+ O

(
𝑉−1/2

) , (5)

in terms of the translation average of the product 𝐶 (𝑥 + 𝑦, 𝑦)𝐶 (𝑥, 0).2
We note that, if all-to-all correlators are not available as it is generally the case, the translation

averages and the truncated sum of the connected correlator in the error formula can still be computed
sampling the source positions 𝑦.

3. Position-space correlators

Usually, momentum-projected correlators are used to extract specific hadronic observables.
This is a viable strategy also with the master-field approach. For instance, one can introduce the
momentum projection at the source, e.g. with a stochastic estimator, and define the momentum-
projected correlator �̃� (𝑥0 − 𝑦0, ®𝑝) =

∑
®𝑦 e−i ®𝑝 · ( ®𝑥−®𝑦)𝐶 (𝑥, 𝑦). The correlator obtained is a quasi-local

function of 𝑥 at fixed 𝑥0 − 𝑦0 and its error can be estimated using translation averages as in Eq. (5).
In these proceedings, however, we focus on the alternative option of exacting the hadronic

masses directly from the the position-space correlator 𝐶 (𝑥) ≡ 〈𝐶 (𝑥, 0)〉. In the continuum and
infinite volume, the two-point function in position-space of non-singlet pseudoscalar densities 𝑃(𝑥)
tends to the bosonic single-particle correlator described by a modified Bessel function of the second
kind,3

𝐶𝑃𝑃 (𝑥) →
|𝑐𝑃 |2

4𝜋2
𝑚𝜋

|𝑥 | 𝐾1(𝑚𝜋 |𝑥 |), for 𝑥 → ∞, (6)

1We drop the subscript Γ and Γ′ when referring to a generic Dirac structure.
2This “four-point” function can be obtained as the disconnected (2 + 2) Wick contraction of four meson fields.
3Or with 𝑚𝜋 replaced by 𝑚𝐾 depending on the flavour of 𝑃(𝑥). For simplicity, here we consider only the 𝑚𝜋 case.
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while the two-point function of nucleon interpolating fields 𝑁 (𝑥) tends to

𝐶𝑁𝑁 (𝑥) → |𝑐𝑁 |2

4𝜋2

𝑚2
𝑁

|𝑥 |

[
𝐾1(𝑚𝑁 |𝑥 |) +

/𝑥
|𝑥 |𝐾2(𝑚𝑁 |𝑥 |)

]
, for 𝑥 → ∞. (7)

The nucleon propagator in Eq. (7) is a Dirac spinor, and the different Dirac index contractions result
in two different scalar functions for 𝑥 → ∞

tr𝐶𝑁𝑁 (𝑥) → |𝑐𝑁 |2

4𝜋2

𝑚2
𝑁

|𝑥 | 𝐾1(𝑚𝑁 |𝑥 |), (8a)

tr /𝑥𝐶𝑁𝑁 (𝑥) → |𝑐𝑁 |2

4𝜋2 𝑚2
𝑁𝐾2(𝑚𝑁 |𝑥 |). (8b)

These equations give access to 𝑚𝜋 and 𝑚𝑁 , but the rotationally-invariant descriptions are
valid in the continuum limit, while at finite lattice spacing they are modified by contributions that
depend on the direction of 𝑥. We postpone a detailed study of the symmetry-breaking discretization
effects and consider in the following only the correlator averaged over 4𝑑 spheres of given radius,
introducing the correlatoion function of the radial coordinate 𝑟

�̊� (𝑟) = 1
r4(𝑟2/𝑎2)

∑︁
|𝑥 |=𝑟

𝐶 (𝑥) (9)

for both 𝐶𝑃𝑃 and 𝐶𝑁𝑁 , where r4(𝑛) = 8
∑
𝑑 |𝑛,4-𝑑 𝑑 is the number of representations of 𝑛 ∈ N as the

sum of four squares, where representations that differ only in the order of the summands or in the
signs of the numbers being squared are counted as different.4

4. Numerical investigation

We test the computation of 𝑚𝜋 and 𝑚𝑁 on an ensemble of 82 gauge field configurations of
a lattice with tree-level Symanzik-improved Lüscher-Weisz gauge action and non-perturbatively
O(𝑎)-improved exponentiated-clover Wilson fermions [2], a spatial extent 𝐿 = 64𝑎 and temporal
extent 𝑇 = 96𝑎, generated using the stochastic molecular dynamics (SMD) algorithm implemented
in the openQCD-2.0 software5 [5]. The bare gauge coupling 𝛽 = 6/𝑔2

0 = 3.8 corresponds to
a lattice spacing 𝑎 ≈ 0.094 fm, and the light and strange hopping parameters ^ℓ = 0.139 187 4,
^𝑠 = 0.138 516 4 correspond to a pion and kaon mass of approximatively 290 MeV and 450 MeV
respectively [2].

The spatial extent of the lattice is about 6.08 fm in physical units, and 𝑚𝜋𝐿 = 8.9 using the
pion mass that we determine in Eq. (13). The volume is too small to reliably apply the master-field
error estimation, therefore the error on the numerical results obtained here is estimated from the
traditional MC ensemble gauge variance.

To provide a realistic comparison to standard modern techniques for extracting hadron (especially
baryon) masses, we apply smearing to the quark fields. In particular, we implement 3𝑑-fermion
smearing [6] with ^3𝑑 = 0.180, 0.190, 0.200, which works for momentum-projected correlators but
breaks the four-dimensional hypercubic symmetry of position-space correlators. In addition, we

4https://oeis.org/A000118

5https://cern.ch/luscher/openQCD
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Figure 1: Left: effective mass corresponding to the radial pion correlator �̊�𝑃𝑃 (𝑟). In lilac, the points
obtained applying the infinite-volume formula for the long-distance behaviour in Eq. (6). In blue, the points
obtained modifying the long-distance behavior to account for finite-volume effects, Eq. (12). In green, the
𝑟-independent effective mass corresponding to the best “one-state” fit to the correlator. In red, the effective
mass corresponding to the best “two-state” fit to the correlator as described in the main text. Right: comparison
of the value of 𝑚𝜋 obtained from the “one-state” fit for various choices of correlators and smearing.

consider gradient-flow smearing of both source and sink quark fields, as defined in Ref. [7]. This
preserves the symmetry of position-space correlators but it affects the transfer matrix and introduces
effects that make the spectral representation of the pion and nucleon correlators non-positive.
However, these effects have a short range and we can ignore them as long as the smearing radius√

8𝑡flow ≈ 0.3 fm is much smaller than the length scales at which the ground states start to dominate
the correlator. We employ point sources and only for the time-momentum meson correlators also
stochastic wall sources.

In the following, given a radial correlator we compute its effective mass 𝑚eff (𝑟) by numerically
solving at every value of 𝑟 the equation

�̊� (𝑟 + 𝑑;𝑚)
�̊� (𝑟;𝑚)

�����
ansatz

=
�̊� (𝑟 + 𝑑)
�̊� (𝑟)

�����
data

(10)

for the mass parameter 𝑚 in the appropriate correlator description. The value of 𝑑 is chosen as the
value closest to one unit of the lattice spacing 𝑎 such that (𝑟 + 𝑑)2/𝑎2 ∈ N, as we observe that this
produces an effective mass much smoother than using, for instance, the smallest possible value of 𝑑.

4.1 Results for the pion mass

In the left panel of Figure 1, we plot the effective mass corresponding to the radial pion correlator
�̊�𝑃𝑃 (𝑟) with gradient-flow-smeared sources and sinks. The points obtained by using Eq. (6) to
define an effective mass according to Eq. (10) deviate significantly from the expected flat behaviour
at large values of 𝑟. We attribute this effect to the limited spacetime extent of the lattice, and we
address this issue with a modification of the expected behaviour of the position-space correlator,
performing a sum over all the images

𝐶
𝐿,𝑇

𝑃𝑃
(𝑥) =

∑︁
𝑛∈Z4

𝐶 (𝑥 + L · 𝑛), with L = {𝑇, 𝐿, 𝐿, 𝐿}. (11)

5
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Inserting the long-distance behaviour from Eq. (6) and performing the average over the 4𝑑 spheres,
we obtain the radial correlator

�̊�
𝐿,𝑇

𝑃𝑃
(𝑟) =

∑︁
𝑛∈Z4

1
r4(𝑟2)

∑︁
|𝑥 |=𝑟

𝐶 (𝑥 + L · 𝑛)

→ |𝑐𝑃 |2

4𝜋2

[
𝑚𝜋

𝑟
𝐾1(𝑚𝜋𝑟) + 6

∫
dΩ3

2π2
𝑚𝜋𝐾1(𝑚𝜋 |𝑥 + 𝐿 · 𝑧 |)

|𝑥 + 𝐿 · 𝑧 | + O
(
e−

√
2𝑚𝜋𝐿 , e−𝑚𝜋𝑇

)]
, (12)

where in the last line we included only the leading images from the finite 𝐿 extent. This is analogous
in spirit to the cosh effective mass used in the standard time-momentum representation. Extracting
the effective mass from the lattice correlator using Eq. (12) results in a very flat behaviour at large
values of 𝑟, as shown in the left panel of Figure 1.

We also perform fits to the radial correlator directly, either using Eq. (12) with the |𝑐𝑃 |2 and 𝑚𝜋
parameters as a fit ansatz, or adding to it an “excited state” 𝑎1

𝑚1
𝑟
𝐾1(𝑚1𝑟) with two extra parameters

𝑎1, 𝑚1 > 𝑚𝜋 . With appropriately chosen fit ranges, the ground state parameters agree between
the two fits, and the fitted 𝑚𝜋 agrees with the plateau average of the effective mass. Moreover, the
second fit is able to describe the correlator to much shorter radial distance. We illustrate this by
plotting the effective mass corresponding to the two fitted correlators in the left panel of Figure 1.

In the right panel of Figure 1, we compare the values of 𝑚𝜋 obtained from the “one-state” fit
of both the time-momentum and the position-space correlators on the same point sources, both
with and without smearing, and the time-momentum correlator on stochastic wall sources. All the
values obtained are compatible. As expected for the meson correlator, we do not see any significant
difference in the achieved precision between smeared point sources with either 3𝑑-fermion or
gradient-flow smearing, and the non-smeared ones. However, we see an increase in the precision
of the point-sources determinations when changing from the time-momentum correlator to the
position-space correlator one. With the latter choice, the value of the pion mass is

𝑚𝜋 = 0.1386(4)/𝑎 ≈ 287.9(8) MeV, (13)

and has a similar error to the value obtained, at the same computational cost, from the time-momentum
correlator with stochastic wall sources.

4.2 Results for the nucleon mass

The left panel of Figure 2 shows a similar analysis for the radial nucleon correlator �̊�𝑁𝑁 (𝑟).
As in the case of the pion, the effective mass obtained by applying the long-distance behaviour in
Eqs. (8a) and (8b) shows a significant deviation from the flat behaviour that we attribute to finite
volume effects. In contrast to the case of the pion, the effect on the effective mass is positive. This
corresponds to a correlator approaching zero with a faster rate than expected. The main contribution
to this effect does not come from mirror images, that fall off much faster than in the case of the pion,
but from the propagation of intermediate 𝑁𝜋 states. Work to understand and correct for this effect is
in progress, but for the purpose of this study we restrict fits to the correlator to 𝑟max = 24𝑎. We also
note that this effect is expected to become irrelevant on master-fields that have a much larger volume.

We perform fits to both contractions of the correlator using the functional form in either Eq. (8a)
or Eq. (8b) to extract |𝑐𝑁 |2 and 𝑚𝑁 , and we compare them with fits including an additional excited

6
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Figure 2: Left: effective mass corresponding to the radial nucleon correlator �̊�𝑁𝑁 (𝑟). In blue, the points
obtained applying the long-distance behaviour to the tr �̊�𝑁𝑁 contraction in Eq. (8a). In orange, the points
obtained applying the long-distance behaviour to the tr /𝑥�̊�𝑁𝑁 contraction in Eq. (8b). In green and brown, the
𝑟-independent effective mass corresponding to the best “one-state” fit to the tr �̊�𝑁𝑁 and tr /𝑥�̊�𝑁𝑁 correlators
respectively. In violet and red, the effective mass corresponding to the best “two-state” fit to the tr �̊�𝑁𝑁
and tr /𝑥�̊�𝑁𝑁 correlators respectively as described in the main text. Right: comparison of the value of 𝑚𝑁
obtained from the “one-state” fit for various choices of correlators and smearing.

state. In this case, we find that �̊�𝑁𝑁 (𝑟) → �̊�𝑁𝑁 (𝑟) · [1 + 𝑎1
𝑚𝜋

𝑟
𝐾1(𝑚𝜋𝑟)], with only one additional

free parameter 𝑎1 (with 𝑚𝜋 fixed from the fit to the pion correlator), adequately describes the
behaviour of the correlator over a longer range of values of 𝑟 .

The right panel of Figure 2 compares the results of the “one-state” fit for 𝑚𝑁 for different
choices of smearing and contractions, both position-space and time-momentum, on the same
point sources. This time we observe that the smeared quark fields give more precise results, with
gradient-flow smeared sources and sinks leading to a determination of 𝑚𝑁 that is about twice as
precise as the unsmeared ones. This is also true for the time-momentum determination, where we
see that gradient-flow smearing performs better than our choices of 3𝑑-fermion smearing parameters,
not shown in the figure. More importantly, the mass extracted from a fit to the position space
correlator is also twice as precise as the one from the time-momentum approach with the same
smearing. We observe a small difference between the two contractions in position space, with
tr /𝑥�̊�𝑁𝑁 corresponding to a systematically larger 𝑚𝑁 . We believe that these are discretization
effects, which are in principle different between the two contractions. From the tr �̊�𝑁𝑁 contraction
using gradient-flow smearing, we obtain the value

𝑚𝑁 = 0.489(5)/𝑎 ≈ 1015(10) MeV. (14)

5. Conclusions and outlook

The concept of stochastic locality, which is at the base of the master-field approach to lattice
QCD, fits naturally with correlators defined in position space, in contrast with momentum-projected
ones. For these reasons, in these proceedings we have given an overview of practical methods
to extract simple hadronic observables from position-space correlation functions of mesons and
baryons.

7
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Initially applying these methods to traditional ensembles with a moderately large volume, our
numerical tests show a statistical accuracy competitive with standard time-momentum techniques:
this is a promising result in view of the application to master-fields, addressing some of the challenges
in making use of master-field translation averages for physics applications. The main systematic
effect comes from the finite volume of the lattice considered in the numerical tests. We are able
to fully correct for this systematics in the case of the pion, but not for the nucleon, which further
strengthens the association of position-space techniques with master-fields in which volume effects
are mostly negligible. Moreover, while good results are obtained assuming rotational symmetry of
the correlators, taking into account the symmetry breaking due to discretization effects remains an
interesting topic for further studies.

With proper master-fields with volumes up to (18 fm)4 and 𝑚𝜋𝐿 ≈ 25 now available [3], we
plan to combine the procedures discussed here with an error estimate fully based on translation
averages. A crucial step is to reduce the computational effort in hadronic observables from ∼ 𝑉2

to ∼ 𝑉 . There are a number of strategies to achieve this that fit naturally with the choice of the
position-space correlator, see e.g. Ref. [1]. Similar ideas applied to the time-momentum correlator
are also worth of investigation, such as the possibility of approximating the momentum projection by
truncating the sum over ®𝑥 to make the correlator more local in space. The hadronic observables that
can profit from these new technological advances go beyond the simple ones considered here, and
include cases in which the very large volume plays a crucial rôle, see Ref. [8, 9].
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